PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

A comparative study of fuzzy logic-based models for groundwater quality evaluation based on irrigation indices

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Analiza porównawcza modeli opartych na logice rozmytej do oceny jakości wód podziemnych na podstawie wskaźników nawadniania
Języki publikacji
EN
Abstrakty
EN
Groundwater quality modelling plays an important role in water resources management decision making processes. Accordingly, models must be developed to account for the inherent uncertainty that arises from the sample measurement stage through to the data interpretation stages. Artificial intelligence models, particularly fuzzy inference systems (FIS), have been shown to be effective in groundwater quality evaluation for complex aquifers. Applying fuzzy set theory to groundwater-quality related decision-making in an agricultural production context, the Mamdani, Sugeno, and Larsen fuzzy logic-based models (MFL, SFL, and LFL, respectively) were used to develop a series of new, generalized, rule-based fuzzy models for water quality evaluation using widely accepted irrigation indices. Rather than drawing upon physiochemical groundwater quality parameters, the present study employed widely accepted agricultural indices (e.g., irrigation criteria) when developing the MFL, SFL and LFL groundwater quality models. These newly-developed models, generated significantly more consistent results than the United States Soil Laboratory (USSL) diagram, addressed the inherent uncertainty in threshold data, and were effective in assessing groundwater quality for agricultural uses. The SFL model is recommended because it had the best performance in terms of accuracy when assessing groundwater quality using irrigation indices.
PL
Modelowanie jakości wód podziemnych odgrywa ważną rolę w procesach podejmowania decyzji dotyczących zarządzania zasobami wodnymi. W związku z tym należy opracować modele uwzględniające naturalną niepewność, która pojawia się od etapu pomiaru próbki, aż do interpretacji danych. Wykazano, że modele sztucznej inteligencji, w szczególności systemy wnioskowania rozmytego (FIS), są skuteczne w ocenie jakości wód podziemnych w odniesieniu do złożonych warstw wodonośnych. Zastosowanie teorii zbiorów rozmytych do podejmowania decyzji związanych z jakością wód podziemnych w kontekście produkcji rolnej, modele oparte na logice rozmytej Mamdaniego, Sugeno i Larsena (odpowiednio MFL, SFL i LFL) zostały wykorzystane do opracowania serii nowych, uogólnionych modeli, opartych na regułach rozmytych, do oceny jakości wody z wykorzystaniem powszechnie akceptowanych wskaźników nawadniania. Zamiast czerpać z jakościowych parametrów fizykochemicznych wód gruntowych, w niniejszym badaniu zastosowano powszechnie przyjęte wskaźniki rolne (np. kryteria nawadniania) podczas opracowywania modeli jakości wód podziemnych MFL, SFL i LFL. Za pomocą tych nowo opracowanych modeli, wygenerowano znacznie bardziej spójne wyniki niż z zastosowaniem diagramu Amerykańskiego Laboratorium Gleby (USSL), uwzględniono nieodłączną niepewność danych progowych. Modele te były skuteczne w ocenie jakości wód podziemnych do zastosowań rolniczych. Model SFL jest zalecany, ponieważ miał najlepszą efektywność pod względem dokładności w ocenie jakości wód podziemnych z użyciem wskaźników nawadniania.
Wydawca
Rocznik
Tom
Strony
158--170
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
  • Kharazmi University, Department of Applied Geology, Faculty of Earth Sciences, Tehran, Iran; McGill University, Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, Quebec, Canada
autor
  • McGill University, Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, Quebec, Canada
  • McGill University, Department of Bioresource Engineering, Faculty of Agricultural and Environmental Sciences, Quebec, Canada
  • Kharazmi University, Department of Applied Geology, Faculty of Earth Sciences, Tehran, Iran
  • University of Tabriz, Department of Earth Sciences, Faculty of Natural Science, Tabriz, Iran
Bibliografia
  • ABBASI T., ABBASI S.A. 2012. Water quality indices. Elsevier. ISBN 978-0-444-54304-2 pp. 384.
  • ALAVI N., NOZARI V., MAZLOUMZADEH S. M., NEZAMABADI-POUR H. 2010. Irrigation water quality evaluation using adaptive network-based fuzzy inference system. Paddy and Water Environment. Vol. 8. No. 3 p. 259–266. DOI 10.1007/s10333-010-0206-6.
  • ALIZADEH A., KESHAVARZ A. 2005. Status of agricultural water use in Iran. In: Water conservation, reuse, and recycling. Proceedings of an Iranian-American workshop. Washington DC, USA. National Academies Press p. 94–105.
  • APHA, AWEF 1998. Standard methods for the examination of water and wastewater. Washington, DC. American Public Health Association, American Water Works Association, and Water Environment Federation pp. 26.
  • ASADOLLAHFARDI G., TAKLIFY A., GHANBARI A. 2011. Application of artificial neural network to predict TDS in Talkheh Rud River. Journal of Irrigation and Drainage Engineering. Vol. 138. No. 4 p. 363–370. DOI 10.1061/(ASCE)IR.1943-4774.0000402.
  • BAIN R.E.S., WRIGHT J.A., CHRISTENSON E., BARTRAM J.K. 2014. Rural: urban inequalities in post 2015 targets and indicators for drinking-water. Science of the Total Environment. No. 490 p. 509–513. DOI 10.1016/j.scitotenv.2014.05.007.
  • BARDOSSY A., BRONSTERT A., MERZ B. 1995. 1-, 2-and 3-dimensional modeling of water movement in the unsaturated soil matrix using a fuzzy approach. Advances in Water Resources. Vol. 18. No. 4 p. 237–251. DOI 10.1016/0309-1708(95)00009-8.
  • BARUA A., MUDUNURI L.S., KOSHELEVA O. 2013. Why trapezoidal and triangular membership functions work so well: Towards a theoretical explanation. University of Texas at El Paso DigitalCommons@UTEP Departmental Technical Reports (CS). Paper 783.
  • DAHIYA S., SINGH B., GAUR S., GARG V.K., KUSHWAHA H.S. 2007. Analysis of groundwater quality using fuzzy synthetic evaluation. Journal of Hazardous Materials. Vol. 147. No. 3 p. 938–946. DOI 10.1016/j.jhazmat. 2007.01.119.
  • DANGE P.S., LAD R.K. 2017. A fuzzy rule based system for an environmental acceptability of Sewage Treatment Plant. KSCE Journal of Civil Engineering, Vol. 21. Iss. 7 p. 2590–2595.
  • DONEEN L.D. 1962. The influence of crop and soil on percolating water. In: Proceedings of the 1961 Biennial conference on Groundwater recharge p. 156–163.
  • EATON F.M. 1950. Significance of carbonates in irrigation waters. Soil Science. Vol. 69. Iss. 2 p. 123–134.
  • GOETHALS P., VOLK M. 2016. Implementing sustainability in water management: Are we still dancing in the dark? Sustainability of Water Quality and Ecology. Vol. 7 p. 1–4. DOI 10.1016/j.swaqe.2016.01.001.
  • GORGIJ D., VADIATI M. 2014. Determination of groundwater quality based on important irrigation indices using analytical hierarchy process method. Agricultural Advances. Vol. 3. Iss. 6 p. 176–185. DOI 10.14196/aa.v3i6.1425.
  • GOWD S.S. 2005. Assessment of groundwater quality for drinking and irrigation purposes: A case study of Peddavanka watershed, Anantapur District, Andhra Pradesh, India. Environmental Geology. Vol. 48. Iss. 6 p. 702–712. DOI 10.1007/s00254-005-0009-z.
  • GÜLER C., KURT M.A., ALPASLAN M., KBULUT C. 2012. Assessment of the impact of anthropogenic activities on the groundwater hydrology and chemistry in Tarsus coastal plain (Mersin, SE Turkey) using fuzzy clustering, multivariate statistics and GIS techniques. Journal of Hydrology. Vol. 414 p. 435–451. DOI 10.1016/j.jhydrol.2011.11.021.
  • HELLENDOORN H., THOMAS C. 1993. Defuzzification in fuzzy controllers. Journal of Intelligent and Fuzzy Systems. Vol. 1. Iss. 2 p. 109–123. DOI 10.3233/IFS-1993-1202.
  • HOSSEINI-MOGHARI S.M., EBRAHIMI K., AZARNIVAND A. 2015. Groundwater quality assessment with respect to fuzzy water quality index (FWQI): An application of expert systems in environmental monitoring. Environmental Earth Sciences. Vol. 74. Iss. 10 p. 7229–7238. DOI 10.1007/s12665-015-4703-1.
  • HOWARI F.M., YOUSEF A.R., RAFIE S. 2005. Hydrochemical analyses and evaluation of groundwater resources of North Jordan. Water Resources. Vol. 32. Iss. 5 p. 555–564. DOI 10.1007/s11268-005-0071-7.
  • KELLEY W.P. 1940. Permissible composition and concentration of irrigation water. In Proceedings of the American Society of Civil Engineers. Vol. 66. p. 607–613.
  • KOH D.C., CHAE G.T., YOON Y.Y., KANG B.R., KOH G.W., PARK K.H. 2009. Baseline geochemical characteristics of groundwater in the mountainous area of Jeju Island, South Korea: Implications for degree of mineralization and nitrate contamination. Journal of Hydrology. Vol. 376. No. 1 p. 81–93. DOI 10.1016/j.jhydrol.2009.07.016.
  • KUSKO B. 1993. Fuzzy thinking: The new science of fuzzy logic. New York. Hyperion. ISBN 1562828398 pp. 318.
  • LARSEN P.M. 1980. Industrial applications of fuzzy logic control. International Journal of Man-Machine Studies. Vol. 12. No. 1 p. 3–10.
  • LERMONTOV A., YOKOYAMA L., LERMONTOV M., MACHADO M.A.S. 2009. River quality analysis using fuzzy water quality index: Ribeira do Iguape river watershed, Brazil. Ecological Indicators. Vol. 9. No. 6 p. 1188–1197. DOI 10.1016/j.ecolind.2009.02.006.
  • MAMDANI E.H., ASSILIAN S. 1975. An experiment in linguistic synthesis with a fuzzy logic controller. International Journal of Man-Machine Studies. Vol. 7. Iss. 1 p. 1–13.
  • MARGHADE D., MALPE D.B., ZADE A.B. 2011. Geochemical characterization of groundwater from northeastern part of Nagpur urban, Central India. Environmental Earth Sciences. Vol. 62. No. 7 p. 1419–1430. DOI 10.1007/s12665-010-0627-y.
  • MathWorks 2014. MATLAB and Fuzzy Logic Toolbox. Release 2014a. MathWorks Natick, Massachusetts.
  • MICHAEL A.M. 2008. Irrigation: theory and practice. 2nd ed. Vikas Publishing House Pvt Ltd, New Delhi. ISBN 8125918671 pp. 1857.
  • MIRABBASI R., MAZLOUMZADEH S.M., RAHNAMA M.B. 2008. Evaluation of irrigation water quality using fuzzy logic. Research Journal of Environmental Sciences. Vol. 2. No. 5 p. 340–352. DOI 10.3923/rjes.2008.340.352.
  • OSTOVARI Y., BEIGI-HARCHEGANI H., ASGARI K. 2015. A fuzzy logic approach for assessment and mapping of groundwater irrigation quality: A case study of Marvdasht aquifer, Iran. Archives of Agronomy and Soil Science. Vol. 61. No. 5 p. 711–723. DOI 10.1080/03650340.2014.946020.
  • PALIWAL K.V. 1972. Irrigation with saline water. 2nd ed. IARI, New Delhi pp. 198.
  • PIPER A.M. 1944. A graphic procedure in the geochemical interpretation of water‐analyses. Eos, Transactions American Geophysical Union. Vol. 25. No. 6 p. 914–928.
  • RAGHUNATH H.M. 1987. Groundwater. 2nd ed. New Delhi. Wiley Eastern. ISBN 0852262981 pp. 563.
  • RAMESH K., ELANGO L. 2012. Groundwater quality and its suitability for domestic and agricultural use in Tondiar river basin, Tamil Nadu, India. Environmental Monitoring and Assessment. Vol. 184. No. 6 p. 3887–3899. DOI 10.1007/ s10661-011-2231.
  • ROSS T.J. 2012. Fuzzy logic with engineering applications. 3rd ed. New York. Wiley. ISBN 978-0-470-74376-8 pp. 585.
  • SCHOELLER H. 1962. Les eaux souterraines : hydrologie dynamique et chimique; recherché, exploitation et évaluation des resources [Groundwater: dynamic and chemical hydrology; research, exploitation and evaluation of resources]. Vol. 1. Paris. Masson et Cie pp. 642.
  • SINGH S.K., SRIVASTAVA P.K., PANDEY A.C., GAUTAM S.K. 2013. Integrated assessment of groundwater influenced by a confluence river system: concurrence with remote sensing and geochemical modelling. Water Resources Management. Vol. 27. No 12 p. 4291–4313. DOI 10.1007/s11269-013-0408-y.
  • STIFF Jr. H.A. 1951. The interpretation of chemical water analysis by means of patterns. Journal of Petroleum Technology. Vol. 3. No. 10 p. 15–17. DOI 10.2118/951376-G.
  • SUAREZ D.L., WOOD J.D., LESCH S.M. 2006. Effect of SAR on water infiltration under a sequential rain–irrigation management system. Agricultural Water Management. Vol. 86. No. 1 p. 150–164. DOI 10.1016/j.agwat.2006.07.010.
  • TAKAGI T., SUGENO M. 1985. Fuzzy identification of systems and its applications to modeling and control. IEEE Transactions on Systems, Man, and Cybernetics. Vol. 15. No. 1 p. 116–132. DOI 10.1109/TSMC.1985.6313399.
  • USSL 1954. Diagnosis and improvement of saline and alkali soils. U.S. Salinity Laboratory Staff. U.S. Department of Agriculture Handbook No. 60.
  • VADIATI M., ADAMOWSKI J., BEYNAGHI A. 2018. A brief overview of trends in groundwater research: Progress towards sustainability? Journal of Environmental Management. Vol. 223 p. 849–851. DOI 10.1016/j.jenvman.2018.06.086.
  • VADIATI M., ASGHARI-MOGHADDAM A., NAKHAEI M., ADAMOWSKI J., AKBARZADEH A.H. 2016. A fuzzy-logic based decision-making approach for identification of groundwater quality based on groundwater quality indices. Journal of Environmental Management. Vol. 184 p. 255–270. DOI 10.1016/j.jenvman.2016.09.082.
  • VADIATI M., NAKHAEI M., AMIRI A. V., MIRARABI A. 2013. An assessment of the Karoon river’s water quality using the fuzzy inference model. Water Engineering. Vol. 6. No. 3 p. 39–48.
  • VAN DER GUN J., HAIE N., HIRATA R., LOPEZ-GUNN E., NEUPANE B., SHAH T., WALLIN B. 2007. Groundwater resources sustainability indicators. 1st ed. UNESCO, Paris.
  • WANG D., LIU D., DING H., SINGH V. P., WANG Y., ZENG X., WANG L. 2016. A cloud model-based approach for water quality assessment. Environmental Research. Vol. 148 p. 24–35. DOI 10.1016/j.envres.2016.03.005.
  • WANG W.C., XU D.M., CHAU K.W., LEI G.J. 2014. Assessment of river water quality based on theory of variable fuzzy sets and fuzzy binary comparison method. Water Resources Management. Vol. 28. No. 12 p. 4183. DOI 10.1007/s11269-014-0738-4.
  • WANG X., RUAN D., KERRE E.E. 2009. Mathematics of fuzziness–basic issues. Studies in Fuzziness and Soft Computing. Vol. 245. Berlin/Heidelberg. Springer pp. 220. DOI 10.1007/978-3-540-78311-4.
  • WILCOX L. 1955. Classification and use of irrigation waters. Washington, DC. USDA. Circular. No. 969 pp. 19.
  • ZADEH L.A. 1965. Fuzzy sets. Information and Control. Vol. 8. No. 3 p. 338–353. DOI 10.1016/S0019-9958(65)90241-X.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-22337d3b-edee-4166-8001-f87f071890d5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.