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Abstract 

Groundwater quality modelling plays an important role in water resources management decision making processes. 
Accordingly, models must be developed to account for the inherent uncertainty that arises from the sample measurement 
stage through to the data interpretation stages. Artificial intelligence models, particularly fuzzy inference systems (FIS), 
have been shown to be effective in groundwater quality evaluation for complex aquifers. Applying fuzzy set theory to 
groundwater-quality related decision-making in an agricultural production context, the Mamdani, Sugeno, and Larsen fuzzy 
logic-based models (MFL, SFL, and LFL, respectively) were used to develop a series of new, generalized, rule-based fuzzy 
models for water quality evaluation using widely accepted irrigation indices. Rather than drawing upon physiochemical 
groundwater quality parameters, the present study employed widely accepted agricultural indices (e.g., irrigation criteria) 
when developing the MFL, SFL and LFL groundwater quality models. These newly-developed models, generated signifi-
cantly more consistent results than the United States Soil Laboratory (USSL) diagram, addressed the inherent uncertainty in 
threshold data, and were effective in assessing groundwater quality for agricultural uses. The SFL model is recommended 
because it had the best performance in terms of accuracy when assessing groundwater quality using irrigation indices. 

Key words: fuzzy inference model, fuzzy rules, irrigation indices, Mamdani model, Sarab Plain  

INTRODUCTION 

The potable, domestic, industrial and agricultural use 
of water resources have led to global concerns regarding 
the degradation of water quality [VADIATI et al. 2018]. The 
main causes of water quality problems include agriculture 
practices, expanding industries and tourism [GOETHALS, 

VOLK 2016]. Groundwater quality deterioration, and its 
effects on soil quality and farmland productivity, is also 
problematic. Particularly in semi-arid countries, population 
growth and rising water demands have led to the over-
exploitation of surface and ground water resources. This 
rising demand has increased the need for groundwater 
quality assessment [BAIN et al. 2014]. In the Middle East, 
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and especially in Iran, widespread groundwater distribution 
and consumption networks have been implemented to sup-
port agricultural activities [VAN DER GUN et al. 2007]. Ac-
counting for roughly 94% of the nation’s annual water us-
age, Iran’s agricultural sector is the nation’s biggest water 
resource stakeholder [ALIZADEH, KESHAVARZ 2005]. Giv-
en the potential effects of irrigation water on cultivated 
soils and crops, assessment and monitoring of water quali-
ty are important to decision-makers. Accordingly, the food 
and agriculture organization of the United Nations (FAO) 
has published water quality guidelines for the agriculture 
sector.  

Compared to surface water, groundwater bears a great-
er quantity and variety of dissolved minerals, complicating 
the assessment of its quality, particularly due to varying 
crop tolerance for different minerals [ABBASI, ABBASI 
2012]. Variation in groundwater quality is tied to a range 
of factors, including regional hydrogeology, geochemical 
processes, irrigation return flows, cation exchange and an-
thropogenic activities [GORGIJ, VADIATI 2014; VADIATI et 
al. 2013]. Groundwater is subject to the poorly understood 
process of hydrochemical evolution as it passes through 
different soil layers and geologic formations, and moves 
from recharge to discharge areas [SINGH et al. 2013]. 

Many diagrammatic and graphical techniques can 
serve to represent the hydrochemical characteristics of wa-
ter destined for agricultural applications [DONEEN 1962; 
PIPER 1944; SCHOELLER 1962; STIFF 1951; USSL 1954; 
WILCOX 1955]. Given the lack of precision these diagrams 
provide, particularly for marginal samples, their interpreta-
tion can prove challenging. The widely-used United States 
Salinity Laboratory (USSL) water quality classification 
system for agricultural production applications, which 
draws solely on electrical conductivity (EC) and sodium 
adsorption ratio (SAR), and ignores other critical indices 
(e.g., magnesium adsorption ratio (MAR), soluble sodium 
percentage (SSP), Kelly’s ratio (KR), residual sodium car-
bonate (RSC) and permeability index (PI)), is unsuited for 
water quality assessment. Water quality assessments and 
modelling involving multi-criteria decision-making pro-
cesses that also consider qualitative and quantitative uncer-
tainties and their transformation, figure among these strat-
egies [WANG et al. 2016]. The fact that many samples may 
be classified within a single category obscures the interpre-
tation of USSL results, complicating decision-making and 
highlighting the need for models that address these issues. 
Moreover, deterministic approaches and graphical tech-
niques cannot account for uncertainty throughout the water 
quality assessment process. In this study, we propose to 
overcome these limitations in assessing water quality by: 
(i) using fuzzy logic (FL) and (ii) developing generalized 
models to evaluate groundwater quality using important 
irrigation indices.  

Among the many discussions of water quality criteria 
selection for decision-making in the literature, a great 
number have noted the inability of deterministic approach-
es to monitor uncertainty throughout the entire decision-
making process [DAHIYA et al. 2007]. Ambiguity and the 
absence of inherent certainty, differing standards and deci-
sion-making units, along with challenges regarding judg-

ment, have led water resources research to explore fuzzy 
set theory and FL [BARDOSSY et al. 1995]. Considering 
water quality assessment to be a fuzzy concept involving 
many indicators and classes, comprehensive fuzzy evalua-
tion methods have recently been widely developed and 
evaluated for their potential use in water quality assess-
ment [DANGE, LAD 2017; WANG et al. 2014]. 

While studies have applied surface water quality crite-
ria to groundwater quality evaluation for agricultural pur-
poses, few studies have directly addressed groundwater 
quality. Similarly, while many studies have discussed the 
applications of FL in water resources evaluation, these 
have been largely limited to the assessment of water quali-
ty for potable uses [DAHIYA et al. 2007; HOSSEINI- 
-MOGHARI et al. 2015; VADIATI et al. 2016]. Accordingly, 
further research on water quality assessment, particularly 
in the context of groundwater use for agricultural purposes, 
is necessary [ALAVI et al. 2010; MIRABBASI et al. 2008; 
OSTOVARI et al. 2015].  

This study’s novelty arises from its development of 
generalized rule-based fuzzy models for water quality 
evaluation using widely accepted irrigation indices. We 
attempt to fill previous gaps in water quality evaluation 
models by applying three types of FL models: Sugeno 
(SFL), Mamdani (MFL) and Larsen (LFL). While these 
three models normally achieve similar levels of accuracy, 
each has different strengths and weaknesses. In this study, 
they were used to develop new fuzzy inference system 
(FIS) models for agricultural applications. To deal with the 
inherent uncertainty in groundwater quality assessment, 
a comprehensive FL rule-based decision model was built 
based on expert knowledge. 

STUDY METHODS 

USSL-DIAGRAM FOR IRRIGATION WATER QUALITY 
EVALUATION 

The USSL diagram [USSL 1954] (see: Fig. 1) is tar-
geted to agricultural production, draws on two important 
physiochemical criteria (SAR and EC), and is a widely ac-
cepted system for water quality classification. The USSL 
diagram is divided into different salinity zones based on 
EC: low (<0.025 S∙m–1), medium (0.025–0.075 S∙m–1), high 
(0.075–0.225 S∙m–1) and very high (0.225–0.500 S∙m–1) 
[USSL 1954].  

IRRIGATION INDICES  

The suitability of groundwater for irrigation is influ-
enced by such factors as soil type, soil drainage, salt toler-
ance and crop type [MICHAEL 2008]. Among the most fre-
quently used water quality evaluation criteria are the SAR, 
MAR, EC, SSP, KR, RSC and PI. SAR represents the alka-
linity hazard to crops [RAGHUNATH 1987]; excessive so-
dium in water can stunt plant growth and deteriorate soil 
structure through the dispersion of clay particles, harden-
ing of soil, surface crusting and the alteration of soil hy-
draulic conductivity [RAMESH, ELANGO 2012; SUAREZ et 
al. 2006]. Since high levels of sodium can reduce soil per- 
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Fig. 1. USSL diagram classes for evaluation of irrigation waters; 
source: USSL [1954] 

meability, the SSP is important in groundwater quality 
evaluation for irrigation purposes. Irrigation water RSC 
assesses water acceptability for irrigation purposes 
[HOWARI et al. 2005], and correlates with the adsorption of 
sodium to the soil [EATON 1950]. Accordingly, for irriga-
tion purposes, water is not suitable when RSC > 2.5 mmol 
Na dm–3, and is deemed harmful when RSC > 5 mmol Na 
dm–3. DONEEN [1962] assessed irrigation water quality 
using the PI because long-term irrigation can affect soil 
permeability. A high magnesium ratio in irrigation ground-
water decreases soil quality and crop yield [GOWD 2005]. 
PALIWAL [1972] introduced the MAR index as a measure 
of magnesium hazard, where MAR > 50 and MAR < 50 
indicate whether groundwater is unsafe or safe for irriga-
tion purposes, respectively. The KR is based on the ratio of 
measured sodium to calcium and magnesium [KELLEY 
1940], where KR < 1.0 and KR > 1.0 indicate suitable and 
unsuitable water for irrigation, respectively. EC reflects the 
dissolved constituents present in groundwater and when 
elevated, reduces the absorption of nutrients and water 
from the soil and increases soil solution osmotic pressure 
[MARGHADE et al. 2011].  

FUZZY INFERENCE SYSTEM (FIS) 

The concept of FL, proposed by ZADEH [1965], has 
been applied in many fields of science and technology. 
FISs normally consist of three main steps: 1) fuzzification, 
2) fuzzy rule base, and 3) defuzzification. One of the main 
advantages of FIS is that it can address various kinds of 
uncertainty. 

The fuzzy sets assign a domain for the interval [0, 1]: 

 𝐴  𝑥  , 𝜇 𝑥 |𝑥 ∈ 𝑋 ,      𝑜 𝜇 𝑥 1 (1) 

Where: 𝜇 𝑥  is the membership function (MF) of 𝑥 in 𝐴.  

A fuzzy set’s level of fuzziness is determined through 
the selection of its MF’s membership values (ranging from 
0 to 1) and shape (e.g., trapezoidal, triangular, etc.) [KUS-

KO 1993]. Qualitative aspects of expert knowledge are 
transferred as “if-then” rules [ZADEH 1965]. Since fuzzy 
inference rule-based systems can address different types of 
uncertainty and vagueness that influence results, FISs are 
helpful in decision-making regarding water management 
[LERMONTOV et al. 2009]. A FIS includes significant ele-
ments, such as MFs, logical operations and fuzzy rules 
[ZADEH 1965]. The aggregation of separate rules is ac-
complished by means of a conjunctive and/or disjunctive 
system, such that logical outputs are subsequently extract-
ed for all rules. In the conjunctive and disjunctive systems, 
rules are connected by “and” and “or” connectives, respec-
tively [ROSS 2012].  

FUZZIFICATION 

Different types of MFs, both linear and nonlinear, are 
involved in the construction of the fuzzification process. 
The MF of a trapezoidal fuzzy set is calculated as [ROSS 
2012]: 

𝑓 𝑥; 𝑎, 𝑏, 𝑐, 𝑑
0  𝑥 𝑥   𝑎 𝑥 𝑏 

 𝑏 𝑥 𝑐    𝑐 𝑥 𝑑 
 (2) 

Where a, b, c and d are constants.  

FUZZY RULE BASE 

The rule base, known as fuzzy “if-then” rules, is in-
cluded in linguistic terms prepared by experts or by extrac-
tions from the data set. Every rule consists of a mathemati-
cal methodology that transfers expert knowledge into fuzzy 
“if-then” rules. The fuzzy rules are comprised of two parts; 
the antecedent (the “if” part) and the consequent (the 
“then” part) [WANG et al. 2009]. 

DEFUZZIFICATION 

The procedure of converting a fuzzy output into a crisp 
value is called defuzzification. Frequently used defuzzifi-
cation operators include the centroid of area (COA), calcu-
lated as: 

 𝑌∗  
 

   (3) 

Where: 𝑌∗  is the fuzzy output converted into a crisp  
value and 𝜇 𝑌  is the aggregation of the output MF 
[WANG et al. 2009]. 

FUZZY LOGIC-BASED MODELS 

The main advantages of FL-based models are their ca-
pability of handling both numerical and linguistic terms at 
the same time [VADIATI et al. 2016]. Additionally, the 
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models are transparent with regards to the 
fuzzy system as they use “if-then” rules and 
MFs. As such, FL models are straightfor-
ward and can be used in many practical 
applications for modelling and control of 
complex systems. The many FIS models 
found in the literature can generate outputs 
that differ significantly. The most well-
known FIS model types (e.g., Mamdani 
[MAMDANI, ASSILIAN 1975], Sugeno 
[TAKAGI, SUGENO 1985] and Larsen 
[LARSEN 1980]; MFL, SFL and LFL, re-
spectively) follow an “if antecedence then 
consequence” pattern. While all fuzzy 
models share the same antecedence, conse-
quence comes in different forms for differ-
ent models. Further inter-model differences 
are based on their formulation of fuzzy “if-
then” rules, aggregated rules and the de-
fuzzification process. In zero or first-order 
SFL models, the output MFs are constant or 
linear, whereas the MFL and LFL models’ 
outputs are fuzzy sets, which then require 
defuzzification. 

A typical rule base in MFL has the 
form, Ri = if x is Ai and y is Bi then z is Ci 
i = 1, 2, …, n then Ri = (Ai ∩ Bi) → Ci is 
defined by 𝜇 𝜇   → 𝑥, 𝑦, 𝑧 . 
A typical rule base in LMF, Ri = if x is Ai 
and y is Bi then z is Ci i = 1, 2, …, n then 
Ri = (Ai ∩ Bi) → Ci is defined by 𝜇
𝜇 ∩ → 𝑥, 𝑦, 𝑧 . In SFL, the rule struc-
ture is based on if Input 1 𝑥  and Input 
2 𝑦 , then 𝑧 𝑝𝑥 𝑞𝑦 𝑟. For a zero-order Sugeno 
model, the output level is a constant (𝑝 𝑞 0) [TAKAGI, 
SUGENO 1985]. A graphical illustration of the MFL, LFL 
and SFL models are shown in Figure 2. 

STUDY AREA AND DATA 

The Sarab Plain is located in northwestern Iran. The 
Sabalan Mountain, situated in the northern part of the 
study area, has the respective highest and lowest elevations 
of 4850 m and 1660 m a.s.l. The study area has an average 
annual rainfall of 343 mm and an average annual tempera-
ture of 7.9°C. The Sarab alluvial aquifer originates from 
the weathering of the Sabalan and Bozqoush mountain 
ranges. The main outcrops in the Sarab plain consist of: 
andesite, dacite, basalt, evaporate sediments, conglomer-
ate, siltstone, and marl, which may have an impact on 
groundwater quality. The groundwater level fluctuation in 
the unconfined Sarab aquifer is due mostly to precipitation, 
river recharge, irrigation return flows to groundwater and 
intensive groundwater withdraw [VADIATI et al. 2016]. 
The hydrochemical composition of groundwater in the 
Sarab Plain is strongly controlled by geology, hydrogeolo-
gy and evaporation minerals within Miocene sediment 
formations. The verification of FL methods is improved 
through the use of general data. Therefore, hydrogeological 
uncertainty and the intensive impact of agricultural activi-

ties in the Sarab Plain made this study area an ideal candi-
date to check the applicability of FL models with respect to 
regional and seasonal variability of groundwater quality. 

Increasing demand for water supplies at new farms has 
led to excessive deep well drilling and the subsequent 
over-extraction of groundwater in the plain. As a result, 
deterioration of groundwater quality has recently become 
a major concern. To assess groundwater quality, a total of 
49 well samples were collected in the wet season, specifi-
cally April 2015, and their hydrochemical parameters ana-
lysed based on standard procedures outlined by the Ameri-
can Public Health Association [APHA, AWEF 1998]. The 
physical parameters (EC, pH and temperature) were meas-
ured in situ and hydrochemical, physiochemical and ion 
balance error analysis was carried out in a laboratory at the 
University of Tabriz, Iran. The sampling sites and water 
resources map of the Sarab Plain is presented in Figure 3. 

MODEL DEVELOPMENT 

The main aim of the present study was to explore FL 
rule-based decision models based on important irrigation 
indices with the aim of replacing conventional classifica-
tion diagrams that have parameter selection insufficiencies. 
The general process used to develop a fuzzy rule-based 
model for agricultural purposes is presented in Figure 4. 
The procedure begins with the selection of sampling loca-
tions and groundwater quality indices. This is followed by 

Fig. 2. Graphical diagrams of fuzzy logic models: a) of Mamdani, b) of Larsen,  
c) Sugeno; source: own elaboration based on MAMDANI and ASSILIAN [1975],  

LARSEN [1980] and TAKAGI and SUGENO [1985] 
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Fig. 3. The sampling sites and water resources map of the Sarab 
Plain, Iran; source: own elaboration  

the development of the fuzzy model by the fuzzification of 
groundwater quality parameters, the use of expert know-
ledge and datasets, and then the development of the MFL, 
SFL and LFL. 

Since water quality degradation can be caused by vari-
ous environmental factors acting simultaneously, indices 
most appropriate to local environments and most relevant 
to the quality of groundwater should be selected. Selecting 
a suitable number of relevant indices is also necessary to 
define the main concerns of management and to facilitate 
efficient restoration and conservation efforts for water re-
sources. 

Fuzzy-logic models based on measured data have been 
receiving more attention than traditional fuzzy models, 
which in general, merely use linguistic rules. The MFL, 
SFL and LFL models developed in this research can pro-
vide groundwater quality assessment for agricultural pur-
poses. This study selected a number of irrigation water 
indices relevant to water quality (e.g., EC, SAR, SSP, RSC, 
PI, MAR and KR) as input parameters in the development 
of the FIS models. More specifically, these indices were 
used to develop the generalized fuzzy models based on the 
prescribed ranges of each parameter. The structure of the 
proposed fuzzy models is depicted in Figure 5. The process 
was executed using MATLAB [MathWorks 2014]. The 
FISs transfer of expert judgment was expressed as “if-
then” rules. In the “if” part, the model input parameters 
 

 

Fig. 4. The general process to develop the fuzzy inference system (FIS) models; source: own elaboration 
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SAR, SSP, RSC, PI, MAR, KR, and EC, were each catego-
rized into three linguistic terms: “low”, “moderate”, and 
“high”. In the consequent “then” part, the model outputs 
were categorized as “desirable”, “acceptable”, and “unac-
ceptable”. 

Appropriate methods for evaluating FL models depend 
strongly on the number of their fuzzy sets. Several MF 
shapes can exist, however, simple “trapezoid” MFs work 
well [BARUA et al. 2013]. In the present study, triangular 
and trapezoidal MFs were used according to the nature of 
the hydrochemical parameters and information available 
from past studies and research. Moreover, to achieve an 
ideal FIS, the type of MFs were selected according to a trial 
and error process and inputs from expert knowledge. For 
example, Figure 6 shows the MF of the SSP input parameter. 

Fuzzy sets determine each input MF, thereby defining 
fuzzy sets in terms of degrees of membership, ranging 
from 0 to 1. Table 1 shows the parameter MFs used in the 
inference fuzzy model in this study. The rules for the mod-
el were constructed based on information drawn from the 
effects of physicochemical input parameters on soil and 
crop quality. The number of rules in the fuzzy inference 
model depends on input parameters and linguistic terms. 
Generally, the weight of every rule is a number between 
0 and 1, and rule weights were set at 1 in the present study. 

After the fuzzy rules are determined, the structure of 
the FL model must be designed. Using an implication pro- 
cess, the previously-developed rules served to transform 
the input MFs into a single MF defined as the output varia-
ble. The outputs of every rule were separately aggregated 
 

 
Fig. 5. A schematic illustration of the fuzzy inference (FIS) models used in this study; source: own elaboration electrical conductivity 

(EC), sodium adsorption ratio (SAR), magnesium adsorption ratio (MAR), soluble sodium percentage (SSP), Kelly’s ratio (KR), residual 
sodium carbonate (RSC), permeability index (PI), fuzzy logic (FL), fuzzy inference system (FIS); source: own elaboration 

 

Fig. 6. Membership function of the soluble sodium percentage (SSP); source: own elaboration 

Table 1. The parameter membership functions used in inference fuzzy models 

Input model High Moderate Low 
c = d b a d c b a d c a = b 

Sodium adsorption ratio 50 14 10 13 10 7 3 7 4 0 
Soluble sodium percentage 100 67 55 67 57 42 28 42 35 0 
Residual sodium carbonate 9 2.8 2 3.5 2.5 1.25 0.5 1.5 0.5 –13.1 
Permeability index 100 62 50 62 56 42 33 44 36 0 
Magnesium adsorption ratio 100 63 55 66 58 44 36 42 35 0 
Kelley's ratio 9 0.9 0.65 0.9 0.65 0. 5 0.3 0. 5 0.35 0 
Electrical conductivity 4000 3400 2800 3500 3000 780 600 800 695 0 

Explanations: a, b, c, and d = membership function parameters. 
Source: own study. 
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into a single fuzzy set, which was then used as the input for 
the defuzzification procedure. For the implication, the 
“min” and “product” operators were used in MFL and LFL 
models, respectively. For both the MFL and LFL tech-
niques, the COA defuzzification method, a well-known 
and widely used technique, was used to obtain the crisp 
output values [HELLENDOORN, THOMAS 1993]. 

RESULTS 

EVALUATION OF GROUNDWATER QUALITY  
USING THE USSL DIAGRAM 

The USSL classification diagram (Fig. 7) of ground-
water classifies water samples into several categories, e.g., 
C1–S1, C2–S1, C3–S1, C3–S2, C4–S2 and C4–S4. Twen-
ty-four samples were in the C2–S1 class, meaning that they 
posed no hazard of sodium exchange in soils for agricul-
tural use. Twenty samples were in the C3–S1 class, mean-
ing that there was little hazard of sodium exchange. One 
sample was in the C1–S1 class, indicating that the water 
had a low saline level and was acceptable in each type of 
soil for agricultural use. One sample was placed in each of 
the C3–S2 and C4–S2 classes, which represented high and 
very high salinity water, respectively, and both required 
specific soil management for agricultural use. The remain-
ing two samples were classified as C4–S4, indicating that 
the water was highly saline and unacceptable for agricul-
tural use. 

The spatial distribution of groundwater samples in the 
Sarab Plain, as classified by the USSL classification dia-  
 

 

 

Fig. 7. The USSL diagram classification of groundwater samples 
from the Sarab Plain; source: own study  

gram, showed that samples in the C2–S1 class were found 
largely in the east where the aquifer is recharged from 
streams (Fig. 8). Samples in the moderate water quality 
C3–S1 class were found mainly in the middle section of 
the study area, where groundwater quality deteriorates due 
to the dissolution of gypsum and mineral salts from Mio-
cene formations, cation exchange and urban wastewater. 
The sample in the C4–S2 class was located in the northern 
portions of the Sarab Plain, where salinity and SAR in-
creased as a result of aquifer recharge from the saline water 
of the Talkheh Rud River [ASADOLLAHFARDI et al. 2011]. 

 

Fig. 8. Spatial USSL classification diagram of groundwater 
samples in the Sarab Plain, Iran; source: own study  

IRRIGATION INDICES 

The key indices, SAR, PI, KR, MAR, RSC, SSP and EC 
were used to determine the water quality for agricultural 
purposes. In the study area samples, KR ranged between 
0.03 and 7.6, and PI between 29.4 and 92.1. A summary of 
irrigation indices of groundwater samples from the Sarab 
Plain is shown in Table 2. A plot of the spatial variation of 
irrigation indices in the Sarab Plain (Fig. 9) shows a com-
plex pattern, precluding simple conclusions being drawn 
regarding the varying behaviour of each index. For exam-
ple, higher values of EC, SSP and MAR were apparent in 
the northern/northwestern, central, and North-East/South-
West parts of the Sarab Plain, respectively. In contrast, the 
distribution of PI was found to be highly variable. 

Table 2. Summary of irrigation indices in groundwater of the 
Sarab Plain 

Statistic SSP RSC PI MAR KR EC SAR 
Minimum 7.5 –13.1 29.4 9.5 0.03 185 0.08 
Maximum 75.9 8.2 91.2 51.1 7.6 3400 27.2 
Mean 53.0 –0.9 55.3 28.7 0.6 952 2.6 
Standard deviation 12.9 3.6 14.4 10.1 1.2 750 6.9 

Explanations: SSP = soluble sodium percentage, RSC = residual sodium 
carbonate, PI = permeability index, MAR = magnesium adsorption ratio, 
KR = Kelly’s ratio, EC = electrical conductivity, SAR = sodium adsorp-
tion ratio. All ion concentration of the parameters were expressed in 
mg∙dm–3. 
Source: own study. 
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Fig. 9. Spatial variation of irrigation indices in groundwater of the
Sarab Plain, Iran; KR = Kelly’s ratio, EC = electrical conductivity,
SAR = sodium adsorption ratio, MAR = magnesium adsorption
ratio, SSP = soluble sodium percentage, RSC = residual sodium
carbonate, PI = permeability index; source: own study 
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RESULTS OF THE FUZZY INFERENCE SYSTEM 
MODELS 

The comparison of groundwater quality classes using 
the proposed FL methods and the USSL diagram (Tab. 3) 
shows that, for sample number 1, for example, input pa-
rameters of SAR = 2, SSP = 47.5, KR = 0.5, MAR = 31.6,  

 

RSC = –2.1, PI = 51.3 and EC = 1510 μS∙cm–1, led to the 
sample being classified as “acceptable” by the FL ap-
proaches (MFL, LFL and SFL), and to fall within the C3–
S1 category of the USSL classification. Many samples 
were situated on the border between the USSL C2–S1 and 
C3–S1 categories (Fig. 7). Therefore, the inherent uncer-
tainty in various steps of groundwater quality assessment, 

Table 3. Comparison of groundwater quality classes using fuzzy logic and USSL class 

No. 
Crisp values of input parameters Decision-making based on fuzzy logic-based models 

USSL 
class SAR SSP KR MAR RSC PI EC 

Mamdani model 
(MFL) 

Larsen model 
(LFL) 

Sugeno model 
(SFL) 

1 2.0 47.5 0.5 31.6 –2.1 51.3 1 510 acceptable acceptable acceptable C3–S1 
2 0.8 59.0 0.2 27.8 –1.2 48.5 580 desirable  desirable  desirable C2–S1 
3 0.5 64.6 0.2 25.0 –0.9 48.4 510 desirable desirable desirable C2–S1 
4 3.2 29.0 0.7 51.1 –3.9 55.5 1 460 acceptable acceptable acceptable C3–S1 
5 1.7 38.0 0.4 46.1 –2.3 51.8 1 020 acceptable acceptable acceptable C3–S1 
6 1.5 37.5 0.4 50.0 –2.2 47.1 880 acceptable acceptable acceptable C3–S1 
7 3.5 51.4 0.5 25.6 –19.7 38.9 3 400 unacceptable unacceptable unacceptable C4–S2 
8 0.1 62.1 0.0 36.8 –0.6 53.3 290 desirable desirable desirable C2–S1 
9 0.2 57.4 0.1 40.5 –0.8 51.3 325 desirable desirable desirable C2–S1 
10 0.3 46.6 0.1 48.1 –0.6 62.1 185 desirable desirable desirable C1–S1 
11 0.3 59.2 0.1 33.3 –0.3 62.5 290 desirable desirable desirable C2–S1 
12 1.5 51.7 0.4 26.4 –2.1 53.8 740 acceptable acceptable desirable C2–S1 
13 5.2 38.3 0.9 27.6 –12.7 53.8 3 000 desirable desirable desirable C2–S1 
14 2.8 54.0 0.5 19.5 –7.4 45.9 2 130 desirable desirable desirable C2–S1 
15 2.0 53.0 0.5 23.0 –6.0 44.6 1 200 acceptable acceptable acceptable C3–S1 
16 1.5 66.2 0.3 16.3 –12.6 29.4 1 765 acceptable acceptable acceptable C3–S1 
17 0.6 69.3 0.2 20.5 –5.0 31.0 847 acceptable acceptable acceptable C3–S1 
18 1.8 54.9 0.4 24.1 –6.1 42.7 1 330 acceptable acceptable acceptable C3–S1 
19 6.1 30.7 1.9 17.7 2.9 85.2 1 300 unacceptable  unacceptable  unacceptable  C3–S2 
20 15.6 20.0 4.2 16.3 7.1 91.2 3 230 unacceptable unacceptable unacceptable C4–S4 
21 0.9 63.2 0.2 23.0 –1.4 47.5 760 desirable acceptable acceptable  C3–S1 
22 0.8 64.3 0.3 20.1 –0.8 53.3 660 desirable desirable desirable C2–S1 
23 2.8 42.2 1.3 13.1 0.9 89.2 584 acceptable acceptable desirable C2–S1 
24 1.3 50.4 0.4 28.8 –0.6 60.9 600 desirable desirable desirable C2–S1 
25 0.8 48.8 0.2 40.7 –2.1 46.6 620 desirable desirable desirable C2–S1 
26 0.2 49.9 0.1 46.7 –1.0 46.8 310 desirable desirable desirable C2–S1 
27 0.5 52.8 0.2 36.4 0.0 70.2 254 desirable desirable desirable C2–S1 
28 1.0 56.7 0.2 31.0 –4.7 37.0 1 130 acceptable acceptable acceptable C3–S1 
29 2.1 56.6 0.4 23.1 –12.5 36.1 1 900 acceptable acceptable acceptable C3–S1 
30 47.2   7.5 7.7 36.0 –14.2 89.8 3 400 unacceptable unacceptable unacceptable C4–S4 
31 1.8 55.1 0.5 18.0 –2.6 54.7 870 acceptable acceptable acceptable C3–S1 
32 1.8 52.5 0.4 28.7 –5.2 43.2 1 350 acceptable acceptable acceptable C3–S1 
33 0.8 69.6 0.3   9.5 –0.6 59.7 450 desirable desirable desirable C2–S1 
34 0.4 61.6 0.2 28.4 –0.1 64.5 310 desirable desirable desirable C2–S1 
35 1.1 48.1 0.5 29.9 0.0 71.4 360 desirable desirable desirable C2–S1 
36 0.9 58.0 0.2 30.3 –3.6 38.6 835 acceptable acceptable acceptable C3–S1 
37 0.6 63.0 0.1 28.1 –2.5 39.4 800 acceptable acceptable acceptable C3–S1 
38 0.8 63.4 0.2 24.0 –2.5 41.1 870 acceptable acceptable acceptable C3–S1 
39 1.6 53.7 0.4 27.0 –6.1 41.3 1 200 acceptable acceptable acceptable C3–S1 
40 0.3 62.5 0.1 33.0 –1.7 36.6 760 acceptable desirable acceptable C3–S1 
41 0.5 55.3 0.2 34.8 –0.7 55.0 320 desirable desirable desirable C2–S1 
42 0.4 53.7 0.1 38.5 –0.6 56.0 300 desirable desirable desirable C2–S1 
43 0.7 75.9 0.2 11.2 –2.6 39.5 800 acceptable acceptable acceptable C3–S1 
44 0.9 54.5 0.3 31.8 –0.2 57.7 540 desirable desirable desirable C2–S1 
45 1.3 56.1 0.3 26.0 –2.8 46.1 860 acceptable acceptable acceptable C3–S1 
46 0.5 68.1 0.2 17.1 –0.1 64.4 300 desirable desirable desirable C2–S1 
47 0.8 68.8 0.2 14.5 0.1 56.0 540 desirable desirable desirable C2–S1 
48 0.8 50.7 0.3 37.0 –0.6 59.1 320 desirable desirable desirable  C2–S1 
49 1.4 43.6 0.5 36.2 –1.0 62.9 430 desirable desirable desirable C2–S1 

Explanations: SAR = sodium adsorption ratio, SSP = soluble sodium percentage, KR = Kelly’s ratio, MAR = magnesium adsorption ratio, RSC = residual 
sodium carbonate, PI = permeability index, EC = electrical conductivity. 
Source: own study. 
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from measurement to interpretation, likely affected the 
results of the USSL classification. Accordingly, the FISs 
that addressed these issues were an appropriate choice to 
evaluate groundwater quality. 

The comparison between the FIS-based approaches 
and a deterministic evaluation is presented in Table 3. For 
samples 8 and 9, the SAR, KR, RSC and EC were in the 
low category, the PI was in the high category, SSP was 
between the moderate and high categories, and MAR be-
tween the low and moderate categories. The USSL dia-
gram classified samples 8 and 9 in the ‘no risk’ C2–S1 
class, while the MFL, LFL and SFL models placed them in 
the “desirable” category. Accordingly, based on both the 
USSL classification and the FL models, samples 8 and 9 
were deemed desirable for irrigation purposes. The FL 
models classified samples 13 and 14 as “desirable” and 
samples 16 and 17 as “acceptable”, while the USSL classi-
fication categorized all those four samples as C3–S1 class. 
Based on the fuzzy models, samples 19 and 20 were classi-
fied as “unacceptable”, whereas the USSL classification 
categorized them as C3–S2 and C4–S4, respectively. For 
both samples, the SSP and MAR criteria were placed in the 
low category, EC was in the moderate category, and PI and 
KR were in the high category. The SAR and RSC were 
placed in the moderate and high category for samples 
number 19 and 20, respectively. The MFL, LFL and SFL 
models placed sample 21 in the “desirable”, “acceptable” 
and “acceptable” categories, respectively, while the USSL 
diagram categorized it as C3–S1. The USSL diagram clas-
sified sample 22 in the C2–S1 class while the FL models 
placed sample 22 in the “desirable” category.  

The developed fuzzy models’ superiority over the 
USSL classification was best revealed in samples of simi-
lar quality, as fuzzy models make a more consistent deci-
sion, especially with respect to threshold values between 
two different classes. The results of the MFL method 
showed that the number of groundwater samples catego-
rized as “desirable”, “acceptable” and “unacceptable” were 
24, 21 and 4 (Tab. 3). The results obtained from the LFL 
model were comparable with those of the MFL model. 
Based on the SFL model, 25, 20 and 4 samples, respective-
ly, were categorized as “desirable”, “acceptable” and “un-
acceptable.” Overall, in the USSL classification, the deci-
sion-making was based on crisp values, while the FIS drew 
flexible boundaries using linguistic terms with respect to 
threshold values between two different classes, thus allow-
ing for more reliable information about groundwater quali-
ty. Generally, it can be concluded that the FL models de-
veloped in the present study were able to cover intrinsic 
uncertainty, were flexible enough to include more criteria 
or indices compared to traditional classification diagrams 
and were able to accommodate human and instrumental 
errors. 

DISCUSSION 

When studying the indices separately, it is easy to 
classify and understand groundwater quality. However, 
when different indices are studied together, it becomes 
difficult to assess overall groundwater quality. The fuzzy 

inference system (FIS) allows for the derivation of a com-
prehensive conclusion of groundwater quality evolution. 
There is a good agreement between the fuzzy models and 
the USSL classification results. It can be concluded that 
the Mamdani, Sugeno, and Larsen fuzzy logic-based mod-
els (MFL, SFL and LFL, respectively) confirmed the 
USSL classification, but the models provided a more con-
sistent decision of water quality due to the incorporation of 
various irrigation indices, especially in marginal samples.  

The results of the present study confirmed the findings 
of MIRABBASI et al. [2008], who proposed an irrigation 
water quality model based on a FIS, and compared its per-
formance to that of the USSL diagram. While showing an 
84% agreement with the USSL method, the proposed mod-
el proved to be significantly more accurate. Using an adap-
tive network-based fuzzy inference system (ANFIS), 
which compared EC–SAR values with the USSL diagram 
to evaluate irrigation water quality, ALAVI et al. [2010] 
showed the ANFIS model to be a reliable substitute for the 
traditional USSL diagram method. Similarly, OSTOVARI et 
al. [2015] employed a Mamdani FIS with a similar EC–
SAR and USSL diagram comparison to evaluate groundwa-
ter quality, for irrigation purposes, in the Marvdasht alluvi-
al aquifer. The authors showed that in 81% of cases, the 
FIS categorized water samples into the same classes as the 
USSL diagram. Nonetheless, many key groundwater quali-
ty criteria (e.g., PI, KR, MAR, RSC, SSP) were not includ-
ed. Their accuracy was gauged against a crisp classifica-
tion method (USSL diagram), and previously reported arti-
ficial intelligence techniques (e.g., FL and ANFIS) that 
based their irrigation water quality evaluations solely on 
SAR and EC, omitting many other criteria important in 
groundwater quality evaluation and classification.  

The exacerbation of soil and water salinization through 
the intensive use of fertilizers and pesticides, heavy metal 
pollution, and the use of low-quality water and soil, re-
quires the development of new indices and methodologies 
to address these critical issues. However, while the need 
for extensive models that consider the effects of water 
quality on both crops and soil is clear, one must keep in 
mind that improving a model’s suitability by integrating 
more parameters also increases its uncertainties. There are 
many driving factors that can affect groundwater quality, 
including climate, hydrogeology and human activities. The 
hydrochemical parameters reveal the geological complexi-
ty of groundwater, and it was found that water-rock inter-
actions and human activities have the most influence on 
groundwater quality [GÜLER et al. 2012; KOH et al. 2009]. 
Therefore, FIS is beneficial for groundwater quality evalu-
ation in hydrogeologically complex regions such as the 
Sarab Plain. It can be argued that the fuzzy inference 
method is a suitable method for irrigation water quality 
assessment due to its integrated decision-making that is 
based on important irrigation indices. The spatial assess-
ment of groundwater quality of the Sarab Plain using MFL, 
LFL and SFL models are shown in Figure 10, respectively. 
As can be seen, samples in the eastern part of the Sarab 
Plain were categorized as “desirable”, and groundwater 
quality deteriorated in the western and central parts of the 
plain. Generally, the results showed that the FL models  
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Fig. 10. Spatial assessment of groundwater quality  
of the Sarab Plain using some fuzzy logic models:  

a) Mamdani, b) Larsen, c) Sugeno; source: own study 

developed in the present study assessed groundwater quali-
ty more precisely and logically than the USSL classifica-
tion diagram (Fig. 8). 

CONCLUSIONS 

Due to the inherent uncertainty in water and soil envi-
ronments, groundwater quality assessment for agricultural 
use is a challenging task. In this study, the Mamdani, 
Larsen and Sugeno fuzzy logic models (MFL, SFL and 
LFL, respectively) were used to determine water quality 
more precisely and to cover the inherent uncertainty in the 
assessment procedure. The present study applied the fuzzy 
assessment method in groundwater quality evaluation. The 
assessment of water quality using traditional methods, as 
well as its classification into “desirable”, “acceptable” and 
“unacceptable” categories based on water quality stand-
ards, were considered less appropriate since such methods 
overlooked the uncertainty of the sampling, analysis and 
interpretation steps. Using FL approaches, groundwater 
quality samples were categorized as “desirable,” “accepta-
ble” or “unacceptable” on the basis of expert perception. 
The results showed that the SFL performed consistently 
better than the other FL models. The superiority of the de-
veloped fuzzy models is best revealed in samples of similar 
quality, which make a more consistent decision. The fuzzy 
inference method was shown to be a suitable method for 
irrigation water-quality assessment because of its integrat-
ed decision-making, which is based on important irrigation 
indices. This present study introduced a more trustworthy 
and flexible method for groundwater quality evaluation 
compared to traditional methods as the proposed model 
considered the uncertainty in the measurement and analyti-
cal process of hydrochemical data. 
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Analiza porównawcza modeli opartych na logice rozmytej do oceny jakości wód podziemnych  
na podstawie wskaźników nawadniania 

STRESZCZENIE 

Modelowanie jakości wód podziemnych odgrywa ważną rolę w procesach podejmowania decyzji dotyczących zarzą-
dzania zasobami wodnymi. W związku z tym należy opracować modele uwzględniające naturalną niepewność, która poja-
wia się od etapu pomiaru próbki, aż do interpretacji danych. Wykazano, że modele sztucznej inteligencji, w szczególności 
systemy wnioskowania rozmytego (FIS), są skuteczne w ocenie jakości wód podziemnych w odniesieniu do złożonych 
warstw wodonośnych. Zastosowanie teorii zbiorów rozmytych do podejmowania decyzji związanych z jakością wód pod-
ziemnych w kontekście produkcji rolnej, modele oparte na logice rozmytej Mamdaniego, Sugeno i Larsena (odpowiednio 
MFL, SFL i LFL) zostały wykorzystane do opracowania serii nowych, uogólnionych modeli, opartych na regułach rozmy-
tych, do oceny jakości wody z wykorzystaniem powszechnie akceptowanych wskaźników nawadniania. Zamiast czerpać 
z jakościowych parametrów fizykochemicznych wód gruntowych, w niniejszym badaniu zastosowano powszechnie przyję-
te wskaźniki rolne (np. kryteria nawadniania) podczas opracowywania modeli jakości wód podziemnych MFL, SFL i LFL. 
Za pomocą tych nowo opracowanych modeli, wygenerowano znacznie bardziej spójne wyniki niż z zastosowaniem dia-
gramu Amerykańskiego Laboratorium Gleby (USSL), uwzględniono nieodłączną niepewność danych progowych. Modele 
te były skuteczne w ocenie jakości wód podziemnych do zastosowań rolniczych. Model SFL jest zalecany, ponieważ miał 
najlepszą efektywność pod względem dokładności w ocenie jakości wód podziemnych z użyciem wskaźników nawadnia-
nia. 
 
Słowa kluczowe: model Mamdaniego, model wnioskowania rozmytego, reguły rozmyte, równanie Saraba, wskaźniki iry-
gacyjne  


