PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Performance analysis of an eight channel demultiplexer using a 2D-photonic crystal quasi square ring resonator

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recent years, the design of photonic crystal (PC) based optical devices is receiving keen interest in research and scientific community. In this paper, two dimensional (2D) PC based eight channel demultiplexer is proposed and designed and the functional characteristics of demultiplexer namely resonant wavelength, transmission efficiency, quality factor, spectral width, channel spacing and crosstalk are investigated. The demultiplexer is designed to drop the wavelength centred at 1537.6 nm, 1538.5 nm, 1539.4 nm, 1540.4 nm, 1541.2 nm, 1541.9 nm, 1542.6 nm and 1543.1 nm. The proposed demultiplexer is primarily composed of bus waveguide, drop waveguide and quasi square ring resonator. The quasi square ring resonator and square ring micro cavity (inner rods) are playing a vital role for a desired channel selection. The operating range of the devices is identified through a photonic band gap (PBG) which is obtained using a plane wave expansion (PWE) method. The functional characteristics of the proposed demultiplexer are attained using a 2D finite difference time domain (FDTD) method. The proposed device offers low crosstalk and high transmission efficiency with ultra-compact size, hence, it is highly desirable for DWDM applications.
Rocznik
Strony
74--79
Opis fizyczny
Bibliogr. 26 poz., il., tab., wykr.
Twórcy
autor
  • Department of Electronics and Communication Engineering, Mount Zion College of Engineering and Technology, Pudukkottai, Tamil Nadu 622507, India
  • Department of Electronics and Communication Engineering, Mount Zion College of Engineering and Technology, Pudukkottai, Tamil Nadu 622507, India
  • Department of Electronics and Communication Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu 622201, India
Bibliografia
  • [1] J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals: Molding the Flow of Light, Princeton University Press, Princeton, NJ, USA, 1995.
  • [2] R. Fermi, R. Houdre, Radiation losses in planar photonic crystals: two dimensional representation of hole depth and shape by an imaginary dielectric constant, Opt. Soc. Am. 20 (2003) 469–477.
  • [3] W.-S. Choi, S.-H. Park, Design of an LED chip structure with an integrated two-dimensional photonic crystal to enhance the light-extraction efficiency, J. Korean Phys. Soc. 64 (2014) 1425–1429.
  • [4] Y. Liu, H. W. M. Salemink, Photonic crystal-based all-optical on-chip sensor, Opt. Express 20 (2012) 19912–19920.
  • [5] S. Robinson, R. Nakkeeran, Investigation on two dimensional photonic crystal resonant cavity based bandpass filter, Optik 123 (2012) 451–457.
  • [6] S. Robinson, R. Nakkeeran, Photonic crystal ring resonator based add-drop filter using hexagonal rods for CWDM systems, Optoelectron. Lett. 7 (2011) 0164–0166.
  • [7] S. Rezaee, M. Zavvarib, H. Alipour-Banaei, A novel optical filter based on H-shape photonic crystal ring resonators, Optik 126 (2015) 2535–2538.
  • [8] Y. Wang, D. Chen, G. Zhang, J. Wang, S. Tao, A super narrow band filter based on silicon 2D photonic crystal resonator and reflectors, Opt. Commun. 363 (2016) 13–20.
  • [9] S.-C. Cheng, J.-Z. Wang, L.-W. Chen, C.-C. Wang, Multichannel wavelength division multiplexing system based on silicon rods of periodic lattice constant of hetero photonic crystal units, Optik 123 (2012) 1928–1933.
  • [10] A. Rostami, F. Nazari, H. Banaei, A. Bahrami, A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure, Photonics Nanostruct. Fundam. Appl. 8 (2011) 14–22.
  • [11] S. Bouamami, R. Naoum, Compact WDM demultiplexer for seven channels in photonic crystal, Optik 124 (2013) 2373–2375.
  • [12] H. Alipour-Banaei, F. Mehdizadeh, S. Serajmohammadi, A novel 4-channel demultiplexer based on photonic crystal ring resonators, Optik 124 (2013) 5964–5967.
  • [13] H. Alipour-Banaei, S. Serajmohammadi, F. Mehdizadeh, Effect of scattering rods in the frequency response of photonic crystal demultiplexers, J. Optoelectron. Adv. Mater. 17 (2015) 259–263.
  • [14] X. Zhang, Q. Liao, T. Yu, N. Liu, Y. Huang, Novel ultra-compact wavelength division demultiplexer based on photonic band gap, Opt. Commun. 285 (2012) 274–276.
  • [15] N. D. Gupta, V. Janyani, Dense wavelength division demultiplexing using photonic crystal waveguides based on cavity resonance, Optik 125 (2014) 5833–5836.
  • [16] M. R. Rakhshani, M. A. Mansouri-Birjandi, Design and simulation of wavelength demultiplexer based on heterostructure photonic crystal ring resonator, Physica E 50 (2013) 97–101.
  • [17] H. Alipour-Banaei, S. Serajmohammadi, F. Mehdizadeh, Optical wavelength demultiplexer based on photonic crystal ring resonators, Photonic Netw. Commun. 29 (2015) 146-150.
  • [18] M. Djavid, F. Monifi, A. Ghaffari, M. S. Abirishamian, Hetero structure wavelength division demultiplexers using photonic crystal ring resonators, Opt. Commun. 281 (2008) 4028-4032.
  • [19] M. R. Rakhshani, M. A. Mansouri-Birjandi, Heterostructure four channel wavelength demultiplexer using square photonic crystals ring resonators, J. Electromagn. Waves Appl. 26 (2012) 1700–1707.
  • [20] X.-n. Zhang, G.-q. Liu, Z. Liu, Y. Hu, M. Liu, Three-channels wavelength division multiplexing based on a symmetrical coupling, Optik 126 (2015) 1138-1141.
  • [21] F. Mehdizadeh, M. Soroosh, A new proposal for eight-channel optical demultiplexer based on photonic crystal resonant cavities, Photonic Netw. Commun. 31 (2016) 65–70.
  • [22] M. A. Mansouri-Birjandi, M. R. Rakhshani, A new design of tunable four port wavelength demultiplexer by photonic crystal ring resonators, Optik 124 (2013) 5923-5926.
  • [23] H. Ghorbanpour, S. Markouei, 2-channel all optical demultiplexer based on photonic crystal ring resonator, Front. Optoelectron. 6 (2013) 224–227.
  • [24] Y. Zhuang, K. Ji, W. Zhou, H. Chen, Design of a DWDM multi/demultiplexer based on 2-D photonic crystals, IEEE Photonics Technol. Lett. 28 (2016)1669-1672.
  • [25] S. G. Johnson, J. D. Joannopoulos, Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis, Opt. Express 8 (2001) 173–190.
  • [26] A. Taflove, S. C. Hegness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd ed., Artech House, Boston, MA, USA, 2000.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-223318ca-aac5-47c2-8bcc-dfcb9a3ed54f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.