Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Increasing the efficiency of installations producing methanol and ammonia with ORC modules
Języki publikacji
Abstrakty
W artykule porównanio instalacjke produkujące paliwa alternatywne takie jak metanol i amoniak. Zaproponowano modernizację obu układów w celu zwiększenia ich sprawności poprzez zastąpienie wymienników ciepła modułami Organic Rankine Cycle, w których zostanie wyprodukowana energia elektryczna. Każde z paliw stanowi paliwo alternatywne, ponieważ produkowane jest na podstawie odnawialnego wodoru, powstałego dzięki wykorzystaniu nadprogramowej energii z odnawialnych źródeł energii. Oprócz tego, do ich produkcji zostały wykorzystane: a) dwutlenek węgla wychwycony nieopodal elektrowni spalającej paliwa nieodnawialne (technologia CCS); b) azot, który stanowi czynnik odrzutowy z instalacji, której zadaniem jest rozdział powietrza w celu uzyskania czystego tlenu (instalacja ASU). Metanol produkowany jest w reaktorze przy temperaturze 210°C i ciśnieniu 7,8 MPa. Amoniak powstaje przy temperaturze 350°C i ciśnieniu 22,5 MPa w reaktorze. Paliwa wyprodukowane dzięki OZE zwiększą szansę na osiągnięcie neutralności klimatycznej do roku 2050 zgodnie z założeniami porozumienia paryskiego.
The article presents a comparison of installations producing alternative fuels (methanol and ammonia). The authors propose to modernize both systems in order to increase their efficiency by replacing heat exchangers with Organic Rankine Cycle modules, in which electricity will be produced. Methanol and ammonia are alternative fuel, because they are produced on the basis of renewable hydrogen, created thanks to the use of additional energy from renewable energy sources. For this production process were used: a) carbon dioxide captured near a power plant that burns conventional fuels (CCS technology); b) nitrogen, which is a waste factor from an installation whose task is to separate air to obtain pure oxygen (ASU installation). Methanol is synthesized in the reactor at a temperature of 210°C and a pressure of 7,8 MPa. Ammonia is formed at a temperature of 350°C and a pressure of 22.5 MPa in the reactor. Fuels produced thanks to renewable energy will increase the chance of achieving climate neutrality by 2050 in line with the assumptions of the Paris Agreement.
Wydawca
Czasopismo
Rocznik
Tom
Strony
22--27
Opis fizyczny
Bibliogr. 21 poz/. rys., tab.
Twórcy
autor
- Politechnika Śląska
autor
- Politechnika Śląska
Bibliografia
- [1] Bisotti F., Galeazzi A., Galatioto L., Masserdotti F., Bigi A., Gritti P., Manenti F.: Implementing rob ust thermodynamic model for reliable buble/dew problem solution In cryogenic distillation of air separation units. International Journal of Thermofluids 10 (2021) 100083
- [2] Buttera G., Jenden S.H., Ahrenfeldt J., Clausen L.R.: Techno-economic analysis of methanol production units coupling solid oxide cells and thermochemical biomass conversion via the TwoStage gasifier. Fuel Processing Technology 215 (2021) 106 718
- [3] Chehade G., Dincer I.: Progress in Green production as potential carbon-free fuel. Fuel 299 (2021) 120 845
- [4] Chisalita D-A., Letitia P., Cormos C-C.: Environmental evaluation of european ammonia production considering various hydrogen supply chains. Renewable and Sustainable Energy Reviews 130 (2020) 109964
- [5] Eba H., Masuzoe Y., Sugihara T., Yagi H., Liu T.: Amonnia production Rusing iron nitride and water as hydrogen Skurceunder mild temperature and pressure. International Journal of Hydrogen Energy 46 (2021) 10642-10652
- [6] Ishaq H., Dincer I.: Dynami moddeling of a solar hydrogen system for power and ammonia production. International Journal of Hydrogen Energy 46 (2021) 13985-14004
- [7] Kender R., Kaufmann F., Rößler F., Wunderlich B., Golubev D., Thomas I., Ecker A-M., Rehfeldt S., Klein H.: Development of a Digital twin for a flexible air separation unit Rusing a pressure-driven simulation approach. Computers and Chemical Engineering 151 (2021) 107 349
- [8] Khojasteh-Salkuyeh Y., Ashrafi O., Mostafavi E., Navarri P.: CO 2 utilization for methanol production; Part I: Processs design and life cycle GHG assessment of different pathways. Journal od CO 2 Utilization 50 (2021) 101 608
- [9] Klaas L., Guban D., Roeb M., Sattler C.: Recent Progress towards solar energy integration into low-pressure Green amonia production Technologies. International Journal of Hydrogen Energy. Dostęp on-line 7.07.2021: https://www.sciencedirect.com/science/article/pii/S0360319921017833
- [10] Kotowicz J.: Wybrane zagadnienie energetyki wodorowej, Nowa Energia nr 2(62)
- [11] Liu S., Yang Y., Yu L., Li X.: Thermodynamis and environmental analysis of solar-driven supercritical water gasification of algae for ammonia synthesis and power production. Energy Conversion and Management 243 (2021) 114 409
- [12] Mancusi E., Bareschino P., Brachi P., Coppola A., Ruoppolo G., Urciuolo M., Pepe F.: Feasibility of an integrated biomass-based CLC combustion and renewable-energy-basd methanol production systems. Renewable Energy (2021) 06 114
- [13] Pawar N.D., Heinrichs H.U., Winkler C., Heuser P-M., Ryberg S.D., Robinius M., Stolten D.: Potential of Green ammonia production in India. International Journal of Hydrogen Energy. Dostęp on-line 7.07.2021: https://www.sciencedirect.com/science/article/pii/S0360319921020826
- [14] Rong Y., Zhi X., Wang K., Zhou X, Cheng X., Qui L.: Thermoeconomic analysis on cascade energy utilization system for compression heat in air separation units. Energy Conversion and Management 213 (2020) 112820
- [15] Schulze J.C., Caspari A., Offermanns C., Mhamdi A., Mitsos A.: Nonlinear model predictive control of ultra-high-purity air separation units Rusing transient wave propagation model. Computers and Chemical Engineering 1455 (2021) 107 163
- [16] Schmitz P., Reniers G., Swuste P.: Determining a realistic ranking of the most dangerous process equipment of the ammonia production process: A practical approach. Journal of Loss Prevention in the Process Industries 70 (2021) 104 395
- [17] Schorn F., Breuer J.L., Samsun R.C., Schnorbus T., Heuser B., Peters R., Stolten D.: Methanol as a renewable energy carrier: An assessment of production and transportation costs for selected global locations. Advanced in Applied Energy 3 (2021) 100 050
- [18] Thangavel S., Verma V., Tarodiya R., Kaliyaperumal P.: Comparative analysis and evaluation of different working fluids for the organic rankine cycle performance. Materials Today. Dostęp on-line 7.07.2021: https://www.sciencedirect.com/science/article/pii/S2214785321036403?via%3Dihub
- [19] Vazquez D., Guillen-Gosalbez G.: Process design within planetary boundaries: Application to CO2 based methanol production. Chemical Engineering Science (2021) 116 891
- [20] Zhang X., Zhang Y., Wang J.: Evaluation and selection of dry and isentropic working fluids based on their pump performance in small-scale organic Rankine Cycle. Applied Thermal Engineering 191 (2021) 116919
- [21] https://ec.europa.eu/clima/policies/international/negotiations/paris_pl
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2229d5a6-b1ba-4b9f-80e6-a1d46f8156c0