PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of light intensity on the lifetime of carriers in silicon investigated by a photoacoustic method

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents experimental results of the lifetime of light induced excess carriers in the n-type silicon. The lifetimes of carriers of silicon crystals were analysed as a function of the intensity of light illuminating the sample. As a measurement method of the lifetime of carriers, the photoacoustic method in a transmission configuration with different surfaces was used. The dependence character was next analysed in the frame of the Shockley Reed Hall statistics in approximation of the light low intensity.
Słowa kluczowe
Twórcy
autor
  • Faculty of Electronics and Computer Science Koszalin University of Technology ul. Śniadeckich 2, 75–453 Koszalin Poland
autor
  • Faculty of Electronics and Computer Science Koszalin University of Technology ul. Śniadeckich 2, 75–453 Koszalin Poland
Bibliografia
  • 1. D. Dietzel, J. Gibkes, S. Chotikaprakhan, B.K. Bein, and J. Pelzl, “Radiometric analysis of laser modulated IR properties of semiconductors”, Int. J. Thermophys. 24, 741–755 (2003).
  • 2. X. Zhang, B. Li, and C. Gao, “Analysis of free carrier absorption measurements of electric transport properties of silicon wafers”, Eur. Phys. J. Special Topics 153, 205208 (2008).
  • 3. S.W. Glunz and W. Warta, “High resolution lifetime mapping using modulated free carrier absorption”, J. Appl. Phys. 77, 3243–3247 (1995).
  • 4. W. Li and B. Li “Analysis of modulated free carrier absorption measurement of electronic transport properties of silicon wafers”, J. Phys.: Conf. Series 214, 012116 (2010).
  • 5. M. Maliński, L. Bychto, Ł. Chrobak, and W. Madej, “Mapping of the lifetime of carriers in semiconductor materials with the use of the modulated free carrier absorption technique”, Przegląd Elektrotechniczny 9, 113–116 (2015).
  • 6. A. Salnick, A. Mandelis, and C. Jean, “Noncontact measurement of transport properties of long-bulk-carrier-lifetime Si wafers using photothermal radiometry”, Appl. Phys. Lett. 69, 2522–25124 (1996).
  • 7. A. Mandelis, A. Othonos, C. Christofides, and J. Boussey-Said, “Non-contacting measurements of photocarrier lifetimes in bulk- and polycrystalline thin-film Si photoconductive devices by photothermal radiometry”, J. Appl. Phys. 80, 5332–5341 (1996).
  • 8. M. Pawlak, and M. Maliński, “Influence of the Ar⁺⁸ and O⁺⁶ ion implantation on the recombination parameters of p and n-type implanted Si samples investigated by means of the photothermal infrared radiometry”, Infra. Phys. Techn. 63, 604–608 (2014).
  • 9. M. Pawlak and M. Maliński, “Minority carrier recombination lifetimes in ntype CdMgSe mixed crystals measured by means of the photothermal infrared radiometry”, OptoElectron. Rev. 22, 31–35 (2014).
  • 10. Ch. Wang, A. Mandelis, J. Tolev, B. Burchard, and J. Meijer, “H+ ionimplantation energy dependence of electronic transport properties in the MeV range in ntype silicon wafers using frequencydomain photocarrier radiometry”, J. Appl. Phys. 101, 1231091–12310910 (2007).
  • 11. A. Mandelis, J. Batista, and D. Shaughnessy, “Infrared photocarrier radiometry of semiconductors: Physical principles, quantitative deph profilometry, and scanning imaging of deep subsurface electronic defects”, Phys. Rev. B 67, 2052081–201520818 (2003).
  • 12. A. Melnikov, B. Hallipop, A. Mandelis, and N.P. Kherani, “Optoelectronic transport property measurements of an amorphous silicon passivated c silicon wafer using noncontacting methodologies”, Thin Solid Films 520, 5309–5313 (2012).
  • 13. M.D. Dramicanin, Z.D. Ristovski, P.M. Nikolic, D.G. Vasiljevic, and D.M. Todorovic, “Photoacoustic investigation of transport in semiconductors: Theoretical and experimental study of a Ge single crystal”, Phys. Rev. B 51, 14226–14232 (1995).
  • 14. Q. Shen and T. Toyoda, ”Photoacoustic characterization of thermal and electronic transport properties of CdInGaS₄ in a transmission detection configuration”, Jpn. J. Appl. Phys. 39, 3164–3168 (2000).
  • 15. D.M. Todorovic and P.M. Nikolic, “Investigation of carrier transport processes in semiconductors by the photoacoustic frequency transmission method”, Opt. Eng. 36, 432–445 (1997).
  • 16. Ł. Chrobak, M. Maliński, and A. Patryn, “Theoretical and experimental studies of a plasma wave contribution to the photoacoustic signal for Si samples”, Acta Acust United Ac 95, 60–64 (2009).
  • 17. Ł. Chrobak, M. Maliński, and A. Patryn, “Influence of plasma waves on the photoacoustic signal of silicon samples”, Int. J. Thermophys. 32, 1986–1997 (2011).
  • 18. D. Macdonald and A. Cuevas, “Validity of simplified Shockley-Read-Hall statistics for modeling carrier lifetimes in crystalline silicon”, Phys. Rev. B 67, 075203 (2003).
  • 19. S. Rein, “Lifetime spectroscopy: a method of defect characterization in silicon for photovoltaic applications”, ed. by Springer Science & Business Media, Berlin, (2006).
  • 20. M.Z. Rahman, “Modelling Minority Carrier’s Recombination Lifetime of pSi Solar Cell”, Int. J. Renewable Energy Research 2, 117-122 (2012).
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2228e32d-eee9-40a5-a898-0390528d72d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.