PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Identification in multiscale thermoelastic problems

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper deals with the identification in multiscale analysis of structures under thermal and mechanical loads. A two-scale model of porous materials is examined. Direct thermoelastic analyses with representative volume element (RVE) and finite element method (FEM) are taken into account. Identification of material constants of the microstructure and identification of the shape of the voids in the microstructure are considered. Identification functional is formulated on the basis of information obtained from measurements in mechanical and thermal fields. Evolutionary algorithm is used for the identification as the optimization technique. Numerical examples of identification for porous aluminum models are enclosed.
Rocznik
Strony
325--336
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wykr.
Twórcy
autor
  • Institute of Computational and Mechanical Engineering Faculty of Mechanical Engineering, Silesian University of Technology Konarskiego 18A, 44-100 Gliwice, Poland
  • Institute of Fundamental Technological Research, Polish Academy of Sciences Pawińskiego 5B, 02-106 Warszawa, Poland
Bibliografia
  • [1] J. Auriault, C. Boutin, C. Geindreau. Homogenization of coupled phenomena in heterogenous media. ISTE Ltd and John Wiley & Sons Inc., London, 2009.
  • [2] G. Beer. Finite element, boundary element and coupled analysis of unbounded problems in elastostastics. Int. J. Numer. Meth. Eng., 19: 567–580, 1983.
  • [3] A. Długosz. Evolutionary computation in thermoelastic problems. IUTAM Symposium on Evolutionary Methods in Mechanics, 117: 69–80, 2004.
  • [4] T. Burczyński, W. Kuś. Distributed evolutionary algorithm – tests and applications. In: Proc. AIMETH 2002, Gliwice, 2002.
  • [5] J. Carter, J. Booker. Finite element analysis of coupled thermoelasticity. Computer and Structures, 31(1): 73–80, 1989.
  • [6] A. Długosz. Optimization and identification in multiscale modelling of thermoelastic solids. Proc. in 20th International Conference on Computer Methods in Mechanics CMM-2013, pp. MS11-13-MS11-14, Poznań, 2013.
  • [7] J. Fish. Bridging the scales in nano engineering and science. Journal of Nanoparticle Research, 8: 577–594, 2006.
  • [8] J. Fish [Ed.]. Bridging the scales in science and engineering, Oxford University Press, 2008.
  • [9] V. Kouznetsova. Computational homogenization for the multiscale analysis of multiphase materials. PhD Thesis, Technische Universiteit, Eindhoven, 2002.
  • [10] Z. Michalewicz. Genetic algorithms + data structures = evolutionary programs, Springer Verlag, Berlin and New York, 1996.
  • [11] MSC.Marc, Theory and user information vol. A–D, MSC Software Corporation, 2010.
  • [12] W. Nowacki. Thermoelasticity. Ossolineum, Wrocław, 1972.
  • [13] K. Terada, M. Kurumatani, T. Ushida, N. Kikuchi. A method of two-scale thermo-mechanical analysis for porous solids with micro-scale heat transfer. Computional Mechanics, 46: 269–285, 2010.
  • [14] O.C. Zienkiewicz, R.L. Taylor. The finite element method. Butterworth-Heinemann, Oxford, 2000.
  • [15] Z. Zivcov, E. Gregorov, W. Pabst, D. Smith, A. Michot, C. Poulier. Thermal conductivity of porous alumina ceramics prepared using starch as a pore-forming agent. Journal of the European Ceramic Society, 29: 347–353, Elsevier, 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2228cf3b-4a4d-4fad-b986-ad5dfacaa2a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.