PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Laboratory methods for testing the performance of pyrotechnic delay elements

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Pyrotechnic delay elements owing to their simple structure and reliability are very often used as part of the design of ammunition. Their basic task consists in generating a specified delay between the respective actions of two elements/systems, required to ensure the safe and reliable work of ammunition. The paper presents laboratory methods employed for testing the performance of pyrotechnic delay elements (PDEs) used in means of combat. The introductory part describes pyrotechnical delay elements and the task fulfilled by them in ammunition. The next part discusses performance parameters of pyrotechnic delay elements, decisive for their proper operation, and factors influencing such operation. In its main part the article presents the standard defining the laboratory methods to be employed for testing pyrotechnic delay elements. According to the above-mentioned standard, the laboratory methods of testing pyrotechnic delay elements can be divided into tests in the open and closed systems. Further, the paper discusses both types of test systems. Taking account of a wide thematic scope of the discussed issue, this article focuses mainly on presenting new methods of testing pyrotechnic delay elements, which have not been mentioned in the standard. Provided examples of tests of pyrotechnic delay elements have been taken from the Polish and foreign literature. Two methods of testing pyrotechnic delay elements are worth paying special attention, one making use of a thermal imaging camera, and the other relying on Roentgen radiation.
Twórcy
autor
  • Research and Testing Department of Explosive Ordnance, Military Institute of Armament Technology, Zielonka, Poland
autor
  • Research and Testing Department of Explosive Ordnance, Military Institute of Armament Technology, Zielonka, Poland
Bibliografia
  • Badania pirotechnicznego opozniacza zaplonu. (n.d.). Materialy niepublikowane ze zbiorow autorow.
  • Beck, M.W. and Flanagan, J. (1992). Delay composition and device, US Patent 5 147 476.
  • Borkowski, J., Nita, M. and Warchol, R. (2013). Ocena przydatnosci laserowego sposobu inicjowania do wyznaczania parametrow opozniaczy pirotechnicznych. Problemy Techniki Uzbrojenia, no. 4(128), pp. 43-51.
  • Davitt, A.L. and Yuill, K.A. (1983). Delay composition for detonators, US Patent 4374686.
  • Dokumentacja konstrukcyjna na M12 Zapalnik glowicowy M-12, oznaczenie 3 – 022092 „17”L (n.d.).
  • Focke, W., Theron, C., Haggard, L. and Fabbro, O. (2012). Measuring Time Delay Burn Rates with an Infrared Camera. 38th International Pyrotechnics Seminar, Denver, Colorado, 10-15 June 2012.
  • Jaki jest status Norm Branzowych BN? (n.d.), [online]. Available at: https://www.pkn.pl/na-skroty/faq/jaki-jest-status-norm-branzowych-bn [Accessed: 30 May 2017].
  • Kosanke, B., Sturman, B., Shimizu, T., Maltitz, W. von and Kubota, I. (2004). Pyrotechnic Chemistry. Series: Pyrotechnic Reference (Book 4). Huntingdon, UK: Journal of Pyrotechnics Inc.
  • Miklaszewski, E., Shaw, P., Poret, C., Son, F. and Groven, J. (2014). Performance and Aging of Mn/MnO2 as an Environmentally Friendly Energetic Time Delay Composition. ACS Sustainable Chemistry & Engineering, no. 2 pp. 1312-1317.
  • Miszczak, M., Nita, M., Warchol, R. and Borkowski, J. (2014). Uklad badania procesu spalania ladunku wysokoenergetycznego zaelaborowanego w kanale przelotowym obudowy. Patent nr 225924.
  • Miszczak, M., Warchol, R. and Nita, M. (2016). X-ray Investigation of Combustion Phenomena Occurring in Certain Pyrotechnic Elements Used in Military Ammunition. Central European Journal of Energetic Materials, Vol. 8, pp. 66-74.
  • Pirotechniczne zespoly zapalnikow. Metody badan czasu palenia w warunkach laboratoryjnych. (1984). Norma branzowa, OST W84-509-72.
  • Poret, C., Shaw, P., Groven, J. and Oyler, D. (2012). Environmentally Benign Pyrotechnic Delays. 38th International Pyrotechnics Seminar, Denver, Colorado, 10-15 June 2012.
  • Przeciwpancerny pocisk kierowany 9M14P1. (1980). Opis techniczny 9M14P1TO. Album nr 7-240.
  • Ricco, M.M., Focke, W.W. and Conradie, C. (2004). Alternative oxidants for silicon fuel in time-delay compositions. Combustion Science and Technology, Vol. 176, no. 3, pp. 1565-1575.
  • Shaw, P., Poret, C., Grau, A. and Gilbert, A. Jr. (2015). Demonstration of the B4C/NaIO4/PTFE Delay in the U.S. Army Hand-Held Signal. ACS Sustainable Chemistry & Engineering, no. 3, pp. 1558-1563.
  • Swanepoel, D., Fabbro, O. Del, Focke, W. and Conradie, C. (2010). Manganese as Fuel in Slow-Burning Pyrotechnic Time Delay. Propellants Explosives, Pyrotechnic, Vol. 35, no. 2, pp. 105- 113.
  • Tichapondwa, S.M. (2015). Reactions of silicon with sulfatebased oxidisers used in pyrotechnic time delay compositions. Praca doktorska. Pretoria: University of Pretoria, 9. 55.
  • Trunov, M., Schoenitz, A. and Dreizin, M. (2005). Ignition of aluminum powders under different experimental conditions. Propellants, Explosives, Pyrotechnics, no. 30, pp. 36-43.
  • Warchol, R., Nita, M. and Bazela, R. (2016). Czynniki wplywajace na parametry pracy pirotechnicznych ukladow opozniajacych. Problemy Techniki i Uzbrojenia, no. 4(140), pp. 87-106.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-22272ea4-06ae-4262-9200-779f59c50948
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.