PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Force mechanism and conceptual design of reinforced concrete short beam without web reinforcement

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Topology Optimization and Finite Element Analysis were carried out for reinforced concrete short beams to reveal the force mechanism. The results show that load-transfer paths for the beams can evolve from Bi-directional Evolutionary Structural Optimization and be mechanically supported by the Michell criterion. In the beams, the distribution of a high- -stress compression area appears as a truss under a concentrated load and a tie-arch under a uniform load. The beams do not have much higher bearing capacity but can consume many more materials. Consequently, new design ideas were recommended based on the load transfer paths obtained by Topology Optimization.
Rocznik
Strony
659--671
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
  • School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, China
autor
  • School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, China
autor
  • School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, China
  • School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, China
Bibliografia
  • 1. ACI (American Concrete Institute) Committee 318, 2019, Building code requirements for structural concrete and commentary, (ACI 318-19), Farmington Hills, MI: ACI.
  • 2. Bendsøe M.P., 1989, Optimal shape design as a material distribution problem, Structural and Multidisciplinary Optimization, 1, 4, 193-202.
  • 3. Bendsøe M.P., Kikuchi N., 1988, Generating optimal topologies in structural design using a homogenization method, Computer Methods in Applied Mechanics and Engineering , 71, 2, 197-224.
  • 4. Bendsøe M.P., Sigmund O., 2003, Extensions and applications. In: Topology Optimization, Springer, Berlin, 71-158.
  • 5. Chen H., Yi W.J., Hwang H.J., 2018, Cracking strut-and-tie model for shear strength evaluation of reinforced concrete deep beams, Engineering Structures, 163, May 15, 396-408.
  • 6. Chinese Code GB50010-2010, 2016, Code for Design of Concrete Structures, Ministry of Housing and Urban-Rural Development of the People’s Republic of China 2016, Beijing, China (in Chinese).
  • 7. Díaz R.A.S., Sarmiento Nova S.J.S., Teixeira da Silva M.C.A., Trautwein L.M., de Almeida, L.C., 2020, Reliability analysis of shear strength of reinforced concrete deep beams using NLFEA, Engineering Structures, 203, 109760.
  • 8. Dorn W.S., Gomory R.E., Greenberg H.J., 1964, Automatic design of optimal structures, Journal de Mcanique, 3, 25-52.
  • 9. Hemp W.S., 1973, Optimum Structure, Clarendon Press, Oxford.
  • 10. Huang X., Xie Y.M., 2007, Numerical stability and parameters study of an improved bi-directional evolutionary structural optimization method, Structural Engineering and Mechanics, 27, 1, 49-61.
  • 11. Ismail K.S., Guadagnini M., Pilakoutas K., 2018, Strut-and-tie modeling of reinforced concrete deep beams, Journal of Structural Engineering, 144, 2, 04017216.
  • 12. Jewett J.L., Carstensen J.V., 2019, Experimental investigation of strut-and-tie layouts in deep RC beams designed with hybrid bi-linear topology optimization, Engineering Structures, 197, 109322.
  • 13. Kotsovos, 1988, Compressive force path concept: basis for reinforced concrete ultimate limit state design, Structural Journal, 85, 1, 68-75
  • 14. Lewiński T., Sokoł T., Graczykowski C., 2018, Michell Structures, Springer, Berlin.
  • 15. Liu X., Yi W.J., 2013, Construction of strut-and-tie model for reinforced concrete beams by optimal method, Engineering Mechanics, 30, 9, 151-157.
  • 16. Magnucki K., Malinowski M., Magnucka-Blandzi E., Lewiński J., 2017, Three-point bending of a short beam with symmetrically varying mechanical properties, Composite Structures, 179, 552-557.
  • 17. Michell A.G.M., 1904, The limits of economy of material in frame structure, The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 8, 47, 589-597.
  • 18. Querin O.M., Steven G.P., Xie Y.M., 1998, Evolutionary structural optimization (ESO) using a bidirectional algorithm, Engineering Computations, 15, 8, 1031-1048.
  • 19. Querin O.M., Young V., Steven G.P., Xie Y.M., 2000, Computational efficiency and validation of bi-directional evolutionary structural optimization, Computer Methods in Applied Mechanics and Engineering, 189, 2, 559-573.
  • 20. Rombach G.A., 2011, Finite Element Design of Concrete Structures, Ice Publishing, London.
  • 21. Uenaka K., Tsunokake H., 2017, Behavior of concrete filled elliptical steel tubular deep beam under bending-shear, Structures, 10, 89-95.
  • 22. Xia L., Xia Q., Huang X., Xie Y.M., 2018, Bi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive review, Archives of Computational Methods in Engineering, 25, 2, 437-478.
  • 23. Xie Y.M., Steven G.P., 1993, A simple evolutionary procedure for structural optimization, Computers and Structures, 49, 5, 885-896.
  • 24. Yang X.Y., Xie Y.M., Liu J.S., Parks G.T., Clarkson P.J., 2002, Perimeter control in the bidirectional evolutionary optimization method, Structural and Multidisciplinary Optimization, 24, 6, 430-440.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-22241578-f7e1-4242-bac2-d8d5bf2810a9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.