PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of Crystallization Process of Intensive Cooled AlSi20CuNiCoMg Alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work is a continuation of research concerning the influence of intensive cooling of permanent mold in order to increase the casting efficiency of aluminium alloys using the multipoint water mist cooling system. The paper presents results of investigation of crystallization process and microstructure of multicomponent synthetic hypereutectic alloy AlSi20CuNiCoMg. The study was conducted for unmodified silumin on the research station allowing the cooling of the special permanent sampler using a program of computer control. Furthermore the study used a thermal imaging camera to analyze the solidification process of multicomponent alloy. The study demonstrated that the use of mold cooled with water mist stream allows in wide range to form the microstructure of hypereutectic multicomponent silumin. It leads to higher homogeneity of microstructure and refinement of crystallizing phases of casting.
Rocznik
Strony
137--144
Opis fizyczny
Bibliogr. 16 poz., rys., wykr.
Twórcy
  • Department of Materials Engineering and Production Systems, Lodz University of Technology, 1/15 Stefanowskiego Street, 90-924 Lodz, Poland
autor
  • Student, Faculty of Mechanical Engineering, Lodz University of Technology, 1/15 Stefanowskiego Street, 90-924 Lodz, Poland
autor
  • Student, Faculty of Mechanical Engineering, Lodz University of Technology, 1/15 Stefanowskiego Street, 90-924 Lodz, Poland
autor
  • Department of Materials Engineering and Production Systems, Lodz University of Technology, 1/15 Stefanowskiego Street, 90-924 Lodz, Poland
Bibliografia
  • [1] Władysiak, R. (2016). Effect of Casting Die Cooling on Solidification Process and Microstructure of Hypereutectic Al-Si Alloy. Archives of Foundry Engineering. 16(4), 175-180.
  • [2] Władysiak R., Kozuń A,, Pacyniak T. (2017). The Effect of Water Mist Cooling on the Solidification, Microstructure and Properties of AlSi20 Alloy. Archives of Metallurgy and Materials. 62(1), 187-194.
  • [3] Karpe, B., Kosec, B., Nagode, A. & Bizjak, M. (2013). The Influence of Si and V on the Kinetics of Phase Transformation and Microstructure of Rapidly Solidified Al-Fe-Zr Alloys. Journal of Mining Metallurgy. Section B: Metallurgy. 49(1) B, 83-89.
  • [4] Roehling J.D., Coughlin D.R., Gibbs J.W., Baldwin J.K., Mertens J.C.E., Campbell G.H., Clarke A.J., McKeown J.T. (2017). Rapid solidification growth mode transitions in Al-Si alloys by dynamic transmission electron microscopy. Acta Materialia. 131 (June), 22-30.
  • [5] Rapiejko, C., Pisarek, B. & Pacyniak, T. (2017). Effect of intensive cooling of alloy AM60 with chromium and vanadium additions on cast microstructure and mechanical Properties. Archives of Metallurgy and Materials. 62(1), 309-314.
  • [6] Yamagata, H., Kasprzak, W., Aniolek, M., Kurita, H. & Sokolowski, J.H. (2008). The effect of Average Cooling Rates on the Microstructure of the Al–20% Si High Pressure Die Casting Alloy Used for Monolithic Cylinder Blocks. Journal of Materials Processing Technology. 203, 333-341.
  • [7] Bamberger, M., Minkoff, I. & Stupel, M.M. (1986). Some Observations on Dendritic Arm Spacing in Al-Si-Mg and Al-Cu Alloy Chill Castings. Journal of Materials Science. 21, 2781-2786.
  • [8] Qin Bai, Yan-fei Hao, Jiao Wang, Hua Man, Yong-jun Tang, Hui Xu, & Shuang Xia (2012). Effect of Cooling Rate on the Magnetic Properties of Fe53Nd37Al10 Alloy. International Journal of Minerals Metallurgy and Materials. 20(5), 440-444.
  • [9] Liang C., Chen Z.H., Huang Z.Y., Zu F.Q. (2017). Optimizing microstructures and mechanical properties of hypereutectic Al-18%Si alloy via manipulating its parent liquid state. Materials Science and Engineering A. 690 (April) 387-392.
  • [10] Pearson, W.B.(1967). Lattice Spacing and Structures of metals and Alloys, Pergamon Press.
  • [11] Massalski, T.B. (1986). Binary Alloy Phase Diagrams. American Society for Metals. Metals Park, Ohio 44073.
  • [12] Mondolfo, L.F. (1976). Aluminium Alloys; Structure and Properties. Butterworth, London.
  • [13] Czekaj, E. (2011). Piston Nickel-free Silumins with High Dimensional Stability, Foundry Research Institute.
  • [14] Pietrowski, S., Szymczak, T., Siemińska-Jankowska B. & Jankowski, A. (2010). Selected Characteristic of Silumins with Additives of Ni, Cu, Cr, Mo, W and V. Archives of Foundry Engineering. 10(2), 107-126.
  • [15] Pietrowski, S. (1998). Hypereutectic silumin with additives Cr, Mo, W and Co. Solidification of Metals and Alloys. 38, 119-118. (Polish).
  • [16] Pietrowski, S., Władysiak, R., Pisarek, B. (1999). Crystallization, Structure and Properties of Silumins with Cobalt, Chromium, Molybdenum and Tungsten Admixtures. Preceedings of the International Conference “Light Alloy and Composites1999”, 77-83.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-22229ba1-3d5c-4131-9c6d-0d4201a63c17
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.