PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Effect of the Residential Photovoltaic Systems Evolution on Electricity and Thermal Energy Usage in Jordan

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to improve the residential photovoltaic systems (RPVS) sector, using surveys as the research method. The research was carried out in four selected districts in Jordan, taking into account the largest population. The prepared sets of questionnaires covered a wide range of topics, divided into three parts and seven sections. The results showed that the highest use of solar energy for heating was in the Amman district, while in the Irbid and Zarqa districts photovoltaic (PV) system installations can potentially be more prospective because of high electricity and thermal energy usage. This study found the willingness of people to have a combined on-grid/off-grid PV systems, made by European and American manufacturers. However, those respondents were afraid of the high maintenance cost, the unclear lifespan of the system, doubtful reliability, and unclear warrantee of the PV systems.
Twórcy
  • Department of Mechanical Engineering, Tafila Technical University, 179, 66110 Tafila, Jordan
  • Department of Mechanical and Industrial Engineering, Applied Science Private University, Amman, Jordan
  • MEU Research Unit, Middle East University, Amman, Jordan
  • Department of Mechanical Engineering, Tafila Technical University, 179, 66110 Tafila, Jordan
  • MEU Research Unit, Middle East University, Amman, Jordan
autor
  • Mechanical Engineering Department, Zarqa University, Zarqa, Jordan
  • Department of Thermal Science, Wrocław University of Science and Technology, ul. Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
  • Department of Accounting, Irbid National University. PO Box 2600, Irbid, Jordan
  • Faculty of Environmental Engineering, Lublin University of Technology, ul. Nadbystrzycka 40B, 20-618 Lublin, Poland
autor
  • Department of Mechanical Engineering, Tafila Technical University, 179, 66110 Tafila, Jordan
  • Faculty of Engineering Management, Bialystok University of Technology, ul. Wiejska 45A, 15-351 Bialystok, Poland
Bibliografia
  • 1. Abu-Rumman G., Khdair A.I., Khdair S.I. Current status and future investment potential in renewable energy in Jordan: An overview. Heliyon, 6(2), 2020: e03346. doi: 10.1016/j.heliyon.2020.e03346.
  • 2. Ministry of Energy and Mineral Resources (2019). Facts and Figures, https://www.memr. gov.jo/ebv4.0/root_storage/en/eb_list_page/bru- chure_2019.pdf.
  • 3. Alrwashdeh S. Assessment of photovoltaic Energy production at different locations in Jordan. Inter- national Journal of Renewable Energy Research, 8(2), 2018: 797–804.
  • 4. Jordan D.C., Marion B., Deline C., Barnes T., Bolinger M. PV field reliability status – Analysis of 100 000 solar systems. Progress in Photovoltaics, 28, 2020: 739–754. doi: 10.1002/pip.3262.
  • 5. Alshare A., Tashtoush B., Altarazi S., El-khalil H. Energy and economic analysis of a 5 MW photovoltaic system in Northern Jordan. Case Studies in Thermal Engineering, 2020: 100722. doi: 10.1016/j.csite.2020.100722.
  • 6. Chambouleyron I. A Third World view of the photovoltaic market. Solar Energy, 36(5), 1986: 381– 386. doi: 10.1016/0038-092x(86)90085-x.
  • 7. Al-Daini A.J. and Al-Samarraie R. Industrial awareness of the role and potential of solar Energy use in the UK. Renewable Energy, 5(5-8), 1994: 1416–1418. doi: 10.1016/0960-1481(94)90182-1.
  • 8. Parker P. Residential solar photovoltaic market stimulation: Japanese and Australian lessons for Canada. Renewable and Sustainable Energy Reviews, 12(7), 2008: 1944–1958. doi: 10.1016/j. rser.2007.03.010.
  • 9. Mesher G.M., Hyman B., Kippenhan C., Zerbe R. A market penetration model for residential photovoltaic deployment and its application in Washington State. Energy, 7(7), 1982: 613–625. doi: 10.1016/0360-5442(82)90017-2.
  • 10. Srinivasan S. Segmentation of the Indian photovoltaic market. Renewable and Sustainable Energy Reviews, 9(2), 2005: 215–227. doi: 10.1016/j. rser.2004.04.001.
  • 11. Tsoutsos T., Mavrogiannis I., Karapanagiotis N., Tselepis S., Agoris D. An analysis of the Greek photovoltaic market. Renewable and Sustainable Energy Reviews, 8(1), 2004: 49–72. doi: 10.1016/j. rser.2003.06.001.
  • 12. Zhao R., Shi G., Chen H., Ren A., Finlow D. Present status and prospects of photovoltaic market in China. Energy Policy, 39(4), 2011: 2204–2207. doi: 10.1016/j.enpol.2010.12.050.
  • 13. Agyenim F., Knight I., Rhodes M. Design and experimental testing of the performance of an outdoor LiBr/H2O solar thermal absorption cooling system with a cold store. Solar Energy, 84(5), 2010: 735– 744. doi: 10.1016/j.solener.2010.01.013.
  • 14. Bauer G. Evaluation of usage and fuel savings of solar ovens in Nicaragua. Energy Policy, 97, 2016: 250–257. doi: 10.1016/j.enpol.2016.07.041.
  • 15. Mathews I., Kantareddy S.N., Buonassisi T., Peters I.M. Technology and market perspective for indor photovoltaic cells. Joule, 3(6), 2019: 1415–1426. doi: 10.1016/j.joule.2019.03.026.
  • 16. Gretz J. On the potential of solar energy conversion into hydrogen and/or other fuels. International Journal of Hydrogen Energy, 5(3), 1980: 269–280. doi: 10.1016/0360-3199(80)90071-3.
  • 17. Glueckstern P. Potential uses of solar energy for seawater desalination. Desalination, 101(1), 1995: 11–20. doi:10.1016/0011-9164(95)00003-k.
  • 18. El-Sayed M.A.H. and Kreusel J. Substitution potential of solar thermal power stations in electri cal energy systems. Renewable Energy, 6(7), 1995: 849–854. doi:10.1016/0960-1481(95)00003-3.
  • 19. Chow T.T., He W., Ji J. Hybrid photovoltaic-ther- mosyphon water heating system for residential application. Solar Energy, 80(3), 2006: 298–306. doi: 10.1016/j.solener.2005.02.003.
  • 20. Beath A.C. Industrial energy usage in Australia and the potential for implementation of solar thermal heat and power. Energy, 43(1), 2012: 261–272. doi: 10.1016/j.energy.2012.04.031.
  • 21. Axaopoulos P.J. and Fylladitakis E.D. Performance and economic evaluation of a hybrid photovoltaic/thermal solar system for residential applications. Energy and Buildings, 65, 2013: 488–496. doi:10.1016/j.enbuild.2013.06.027.
  • 22. Dakkak M., Hirata A., Muhida R., Kawasak, Z. Operation strategy of residential centralized pho- tovoltaic system in remote areas. Renewable Energy, 28(7), 2003: 997–1012. doi: 10.1016/s0960- 1481(02)00222-7.
  • 23. Green M.A. Photovoltaic technology and visions for the future. Progress in Energy, 1(1), 2019: 013001. doi:10.1088/2516-1083/ab0fa8.
  • 24. Fachrizal R. and Munkhammar J. Improved Photovoltaic Self-Consumption in Residential Buildings with Distributed and Centralized Smart Charging of Electric Vehicles. Energies, 13(5), 2020: 1153. doi: 10.3390/en13051153.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-22211c93-911d-470d-88a1-43acffb1d327
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.