e-Informatica Software Engineering Journal, Volume 13, Issue 1, 2019, pages: 227-259, DOI 10.5277/e-Inf190107

Software Change Prediction: A Systematic
Review and Future Guidelines

Ruchika Malhotra*, Megha Khanna**

* Department of Computer Science € Engineering, Delhi Technological University
**8ri Guru Gobind Singh College of Commerce, University of Delhi

ruchikamlahotra2004@yahoo.com, meghakhanna86@gmail.com

Abstract

Background: The importance of Software Change Prediction (SCP) has been emphasized by
several studies. Numerous prediction models in literature claim to effectively predict change-prone
classes in software products. These models help software managers in optimizing resource usage
and in developing good quality, easily maintainable products.

Aim: There is an urgent need to compare and assess these numerous SCP models in order to
evaluate their effectiveness. Moreover, one also needs to assess the advancements and pitfalls in
the domain of SCP to guide researchers and practitioners.

Method: In order to fulfill the above stated aims, we conduct an extensive literature review of 38
primary SCP studies from January 2000 to June 2019.

Results: The review analyzes the different set of predictors, experimental settings, data analysis
techniques, statistical tests and the threats involved in the studies, which develop SCP models.
Conclusion: Besides, the review also provides future guidelines to researchers in the SCP domain,
some of which include exploring methods for dealing with imbalanced training data, evaluation of

search-based algorithms and ensemble of algorithms for SCP amongst others.

Keywords: change-proneness, machine learning, software quality, systematic review

1. Introduction

The importance of planning and implementing
change in a software is accepted universally. It
is crucial for a software to reform in order to
remove existing defects, to upgrade itself with
the changing user requirements and technological
progressions or to improve the current perfor-
mance and structure [1-3]. In case a software
product is unable to do so, it rapidly becomes
obsolete and extinct. Thus, change management
of a software product is a vital activity, which
needs to be properly enforced.

Prediction of change-prone parts of a soft-
ware product is an effective mechanism for soft-
ware change management. Change-proneness is
defined as the likelihood that a class would
change across different versions of a software

Submitted: 3 July 2019; Revised: 14 October 2019;

Accepted: 14 October 2019;

product [1,4]. Since it indicates whether a spe-
cific class would require change in the forthcom-
ing release of the software, it is generally rep-
resented by a binary variable indicating “yes”
(change-prone class) or “no” (not change-prone
class). Knowledge of change-prone classes aids
software managers in effectively planning critical
software resources such as cost, time and human
effort. Sufficient allocation of these resources to
change-prone classes ensures that they are care-
fully designed and rigorously verified [1-3]. Such
activities would result in a good quality, easily
maintainable and cost-effective software prod-
ucts.

Various studies in literature have successfully
developed software quality models to predict
change-prone classes of a software. These studies
have explored a variety of predictor variables,

Available online: 12 November 2019

http://www.e-informatyka.pl/wiki/e-Informatica
http://www.e-informatyka.pl/attach/e-Informatica_-_Volume_13/eInformatica2019Art07.pdf

228

Ruchika Malhotra, Megha Khanna

numerous classification algorithms and extensive
software datasets for empirical validation. At
such a stage, it is imperative for researchers to
analyze the current state of literature and com-
pare the capabilities of existing SCP models in
literature. Such a step is important in order to
summarize the existing trends in the domain and
simultaneously analyze the shortcomings and
future directions in the area. Thus, we conduct
a systematic literature review of SCP studies
from the period of January 2000 to June 2019.
The review is conducted according to the guide-
lines specified by Kitchenham et al. [5].

Though, software change-proneness predic-
tion studies have been earlier assessed by previ-
ous review studies [6,7], they have not been effec-
tively scrutinized for trends specific to the soft-
ware change domain. These studies have either
been explored as an application of Search-Based
Algorithms (SBA) to predictive modeling [6]
or for only assessing the threats specific to
SBA [7]. A previous study by Godara and
Singh [8] assessed change-proneness prediction in
Object-Oriented (OO) software. However, they
only presented a survey of the studies with-
out critically analyzing their various parame-
ters. Also, though a previous attempt by the
authors [9] evaluated SCP studies, the analysis
was limited with no emphasis on the predictive
capabilities of various data analysis algorithms.
To the best of our knowledge, no study in the
literature has comprehensively evaluated and
summarized the experimental settings, predictor
metrics, datasets, capabilities of data analysis
algorithms, statistical tests and threats with re-
spect to SCP studies.

On the other hand, there are various review
studies which analyze defect-proneness prediction
(a closely related area to change-proneness) lit-
erature. A study by Catal and Diri [10] reviewed
74 defect prediction studies to assess the met-
rics, data analysis algorithms and datasets used
in defect prediction literature. They concluded
that method-level metrics, machine learning algo-
rithms and public datasets are the most dominant
in the area. Hall et al. [11] reviewed 36 primary
studies to study the context, predictors and data
analysis algorithms used for defect prediction.

They concluded that combination of predictor

variables yields better defect prediction models

and feature selection enhances the performance

of the developed models. Radjenovic et al. [12]

reviewed 106 primary studies and classified the

metrics used in defect prediction literature as

Object-Oriented (OO) metrics, traditional source

code metrics and process metrics. A review study

by Wahono [13] assessed 71 defect prediction
studies between the period January 2000 to De-
cember 2013. The review assessed the trends and
frameworks in defect prediction literature apart
from datasets and data analysis algorithms. As
pointed out in the review, the frameworks devel-
oped by certain defect prediction studies do not
address the issue of class imbalance and noisy data.
Hosseini et al. [14] reviewed 30 primary studies to
assess the state of the art in cross project defect
prediction. They concluded that cross-project
defect prediction still requires extensive research
before it yields reliable results. Certain other re-
views on defect-proneness prediction includes the
one conducted by Malhotra [15], Singh et al. [16]
and Catal [17]. Though these reviews yield a signif-
icant contribution to defect prediction literature,
there a huge gap in change prediction literature
in terms of an effective and extensive review.
We investigate the following Research Ques-
tions (RQs) in the review:
— RQI1: Which predictors are useful for devel-
oping SCP models?
— RQ2: What have been the various experimen-
tal settings used in primary studies while
developlng SCP models?
RQ2.1: What are the various feature se-
lection or dimensionality reduction tech-
niques?

— RQ2.2: What are the characteristics of
datasets used?

— RQ2.3: What are the various validation
methods used?

— RQ2.4: Which performance measures have
been used?

— RQ3: What are the various categories of data
analysis algorithms used for developing SCP
models?

— RQ3.1: Which is the most popular cate-
gory of data analysis algorithm used?

Software Change Prediction: A Systematic Review and Future Guidelines

229

— RQ3.2: Which Machine Learning (ML)
algorithms have been evaluated?

— RQ4: What is the predictive performance of
ML algorithms for developing SCP models?
How does the predictive capability of ML
algorithms compare amongst themselves?

— RQb5: What are the various statistical tests
used for validating the results of SCP models?

— RQ6: What threats to validity exist while
developing SCP models?

— RQ6.1: What are the various categories of
threats which exist while developing SCP
models?

— RQ6.2: What are the steps required to
mitigate the threats identified in RQ6.17

The aim of the review is to summarize the

empirical evidence reported in literature with re-

spect to SCP. It would also help in identification
of research gaps and will provide future possible
guidelines to researchers and practitioners. The
organization of the study includes the impor-
tance of SCP (Section 2), review procedure and
the various review stages (Section 3), the review
protocol (Section 4), the answers to the investi-

gated RQ’s (Section 5), the threats (Section 6)

and finally the conclusions and future guidelines

(Section 7).

2. Importance of SCP

There are several diverse reasons for change-
proneness of a specific code segment. Some
real-world examples of why a specific code seg-
ment could be prone to changes are provided
below:

— A code segment may have bad structure or
rigid design which is difficult to extend [18].

— A code segment might contain errors which
have escaped the testing phase and now re-
quires maintenance [19-21].

— Business requirements of an organization
could change necessitating a change in source
code segment [19,20].

Therefore, SCP is critical in order to identify
such change-prone code segments in the early
stages of software lifecycle so that developers
allocate proper manpower, cost and time to

modify them [18,21-23]. Such a step is crucial
in order to keep the software operational, and
ensure customer satisfaction. Even in the era
of agile development, SCP is an approach to
continuously monitor change-proneness so that
effective product quality is maintained. Neglect
of change-prone code fragments could result in
poor software quality, extensive costs [20] as the
cost to correct errors increases manifold as they
propagate to later stages of the software product
coupled with delayed delivery schedules.

Before we state the review procedure, it is
important to ascertain as to how a specific seg-
ment (class/file/module) of source code is ad-
judged as change-prone or not change-prone in
primary studies. Majority of primary studies con-
sider a specific segment as change-prone if there
is at least one insertion, removal or modifica-
tion of Source Lines of Code (SLOC) in the
specific code segment from current software re-
lease to its next [24-26]. We term this defini-
tion as “SLOC-based” method. In certain other
primary studies, a specific code segment is con-
sidered change-prone if the number of changes
it underwent from one release to the next is
greater than the median value (median of num-
ber of changes in all the source code segments
in the software) [19,27,28]. We term the defini-
tion as “median-based” method. However, few
primary studies used boxplot-based partition
method [18], class stability [29] or other meth-
ods to define the dichotomous change-proneness
dependent variable.

As discussed above, primary studies have
used various methods to define change-proneness.
However, it is difficult to adjudge any one of them
as best as each method has its own merits and
demerits. The “SLOC-based method” may desig-
nate a segment as change-prone even if very few
(even one) SLOC has been changed. This ensures
that no change is missed as it is possible that crit-
ical changes to the code are performed by chang-
ing very few SLOC. It may be noted that such
code segments may be candidates for corrective
maintenance but not very much for preventive
maintenance as only few SLOC has been mod-
ified and not much structure would have been
altered. However, this method has a downside,

230

Ruchika Malhotra, Megha Khanna

even trivial changes to the code would also make
the code segment counted as change-prone. On
the other hand, the “median-based” method ig-
nores the code segments with very few changes. It
focuses on identifying classes which requires pre-
ventive maintenance. The goal of “median-based”
method is to find which classes will change more
than others, not which classes will change in
an absolute manner. But as discussed earlier
the “median-based” method may ignore critical
changes if they are performed using very few
lines.

3. Review procedure

According to the guidelines advocated by
Kitchenham et al. [5], a review is conducted
in three fundamental stages. These stages are
reportedly planning, conducting and reporting.
The foremost step of the planning stage is to
evaluate the necessity of the review. As already
discussed, this review is important so as to evalu-
ate, assess and summarize the empirical evidence
with respect to prediction of change-prone classes
in software products. It intends to provide an
overview of existing literature in the domain
and would scrutinize possible future directions.
Once the need of the review is assessed, the plan-
ning stage involves formation of RQs. Thereafter,
a review protocol is formulated. The protocol
includes a detailed search strategy. The search
strategy consists of the list of possible search
databases one intends to scrutinize, the search
string and the criteria for inclusion or omittance
of the extracted studies. Apart from the search
strategy, the protocol also includes the criteria
for assessing the quality of the candidate studies,
the procedure for collecting the relevant data
from the primary studies and synthesis of the
collected data. The second stage involves the
actual execution of the review protocol. In this
stage, all the primary studies are extracted, scru-
tinized and the relevant data is obtained. The
final stage of the review reports the results of
the investigated RQs. The RQs are answered on
the basis of the data collected from the primary
studies of the review.

4. Protocol for conducting the review

The following sections describe the review proto-
col followed which lists the search strategy used,
the criteria used for selecting or omitting the
extracted studies and the criteria for evaluating
the quality of the collected candidate studies.

4.1. Search strategy

The search terms were designed by dividing the
explored RQs into logical units. Moreover, terms
were identified from paper titles, keywords and
abstracts. Thereafter, all equivalent terms and
synonyms were compiled using Boolean OR (||),
while distinguishable search terms were aggre-
gated using Boolean AND (&). As indicated ear-
lier, the search period was January 2000—June
2019. The designed search-string is:

(“software product” || “open source project”
|| “software application” || “software system”
|| “software quality” || “source code”) &

(“change” || “evolution” || “maintenance”) &

(“prediction” || “proneness” || “classification”

|| “classifier” || “empirical”) & (“machine

learning” || “statistical” || “search-based” ||

“evolutionary” || “data analysis”)

The search was conducted in SCOPUS, ACM
digital library, Wiley online library, IEEExplore
and SpringerLink, as these are well-known search
databases. We also searched the reference lists
of the studies and found seven studies. In all,
we identified and extracted 67 relevant studies,
which were further subjected to the criteria indi-
cated in Section 4.2.

¢

4.2. Inclusion and omittance criteria

We use the following inclusion and omittance

criteria for selecting or rejecting a study based on

the RQs, after which we get 41 candidate studies.

— Inclusion Criteria: All studies which predict
the dichotomous change-proneness attribute
of a class/module or determine class stabil-
ity with the aid of software metrics were
included. We also include studies which re-
ported and compared various data analysis
algorithms amongst themselves for developing
SCP models.

Software Change Prediction: A Systematic Review and Future Guidelines

231

Omittance Criteria: Extracted studies which
predict other dependent variables such as main-
tenance effort, maintainability, change-count,
fault-proneness, amount of changes, etc. were
excluded. A related concept to change-prone-
ness is code churn. It is defined as the volume
of SLOC that is changed (inserted, modified or
removed) between two versions of a software
and represents the extent of change [30]. It
is a continuous attribute and encapsulates
the maintenance effort required by the class
while it undergoes changes (bug correction,
enhancements or refactoring). The current re-
view limits itself to binary change-proneness
attribute and does not include studies which
assess code churn. Also, studies which predict
ordinal dependent variables for change-prone-
ness such as low, medium, high, etc. were not
included as a part of the review.

We also omitted survey or review papers, PhD
dissertations, short or poster papers and stud-
ies with limited or non-existent empirical anal-
ysis. A conference paper which has been pub-
lished as a journal article was also omitted
and only the corresponding journal article was
included. Though change-proneness attribute
has been explored in design pattern litera-
ture [31] and technical debt literature [32], we
exclude such studies. Therefore, studies which
used only design patterns or code smells for
determining change-prone nature of a class
/module were removed.

4.3. Quality criteria

We assess the importance of each candidate study
in answering the investigated RQs. The 41 can-
didate studies were evaluated according to the
quality criteria illustrated in Table 1. Each can-
didate study was given a Quality Score (QS)
by combining the scores of a specific study on
the basis of the 10 quality questions stated in
Table 1. For each question, a candidate study can
be either given a score of 0 (No), 0.5 (Partly) or
1 (Yes). Table 1 states the number of candidate
studies which were allocated different scores (Yes,
Partly or No). All the studies whose QS was less
than 5 (50% of the total quality score) were
rejected. We rejected three studies [33-35]. After
quality analysis, we selected 38 studies, which we
term as the primary studies of the review. The
data needed to answer the RQs was extracted
only from the primary studies.

Table 2 states the Primary Studies (PS) with
a specific study number (SNo.) and its QS. The
most popularly cited studies were PS10 and
PS13.

4.4. Data extraction

The primary studies were classified according to
publication year, publication venue, predictors,
datasets, data analysis algorithms, performance
measures, validation methods, statistical tests
and threats to validity.Table A1 (Appendix A)

Table 1. Quality assessment questions

Quality questions Yes Partly No
Are the objectives of the research/research questions clear and concise? 41 0 0

Are the predictor variables clearly defined and described? 27 12 2

Are the number and magnitude of datasets analyzed suitable? 30 10 1

Are the predictors effectively chosen using feature selection/dimensionality reduction 20 4 17
techniques?

Are the data analysis techniques clearly defined and described? 25 9 7

Is there any comparative analysis amongst various models/techniques? 34 1 6

Are the performance measures clearly specified? 33 7 1

Did the study perform statistical hypothesis testing? 25 1 15
Does the study use appropriate validation methods? 32 1 8

Is there a description of threats to validity of research? 19 3 19

232

Ruchika Malhotra, Megha Khanna

Table 2. Primary studies with quality score

SNo. Study QS SNo. Study QS
PS1 Liu and Khoshgoftaar 2001 [36] 6.5 PS20 Elish et al. 2017 [37] 8
PS2 Khoshgoftaar et al. 2003 [38] 6.5 PS21 Kumar et al. 2017a [39] 8
PS3 Tsantalis et al. 2005 [40] 8 PS22 Kumar et al. 2017b [41] 9
PS4 Sharafat and Tahvildari 2008 [42] 5.5 PS23 Kumar et al. 2017c¢ [43] 7
PS5 Azar 2010 [44] 6.5 PS24 Malhotra and Jangra 2017 [45] 9
PS6 Han et al. 2010 [46] 6 PS25 Malhotra and Khanna 2017a [26] 9.5
PS7 Azar and Vybihal 2011 [29] 7.5 PS26 Malhotra and Khanna 2017b [47] 9.5
PS8 Eski and Buzluca 2011 [48] 5 PS27 Yan et al. 2017 [49] 9.5
PS9 Lu et al. 2011 [24] 7 PS28 Agrawal and Singh 2018 [50] 8
PS10 Romano and Pinzger 2011 [27] 8 PS29 Catolino et al. 2018 [19] 9.5
PS11 Giger et al. 2012 [28] 8 PS30 Ge et al. 2018 [23] 6.5
PS12 Elish et al. 2013 [25] 95 PS31 Liu et al. 2018 [51] 7
PS13 Malhotra and Khanna 2013 [52] 9 PS32 Kaur and Mishra 2018 [53] 8
PS14 Malhotra and Bansal 2014 [54] 6 PS33 Malhotra and Khanna 2018a [55] 9.5
PS15 Malhotra and Khanna 2014 [56] 9 PS34 Malhotra and Khanna 2018b [57] 9.5
PS16 Marinescu 2014 [58] 7 PS35 Zhu et al. 2018 [18] 9.5
PS17 Elish et al. 2015 [59] 6 PS36 Catolino and Ferrucci 2019 [19] 9.5
PS18 Malhotra and Khanna 2015 [60] 8.5 PS37 Kumar et al. 2019 [22] 8
PS19 Bansal 2017 [61] 9.5 PS38 Malhotra and Khanna 2019 [21] 9.5
states the key parameters of primary studies after ﬁ:
the data extraction step. 10
9.
s

5. Review results

The current section states the review results and
the discussions corresponding to the obtained
results. We categorized the primary studies ac-
cording to their publication venue and found
that 37% of the 38 primary studies were con-
ference publications, 59% of the studies were
journal publications and one study each was
published as a technical report and a chap-
ter. The most popular journals were “Infor-
mation and Software Technology” (11% stud-
ies) and “Journal of Software: Evolution and
Process” (8% studies). “International Confer-
ence on Advances in Computing, Communica-
tion and Informatics” and “Innovations in Soft-
ware Engineering Conference” were found to be
the most popular conference venues with 5%
of publications each. Figure 1 depicts a distri-
bution of all the primary studies according to
“publication year”. According to the figure, the
highest number of SCP studies were published
in 2017.

Number of Studies
0
Il

[IE
\} 3 > o & Q Q) L o G
\) Q] N} \) 3} O D’ \Y O D

Year of Publication

Figure 1. Publication year of primary studies

5.1. Predictors used for SCP (RQ1)

This RQ determines the various predictors which
have been used for developing SCP models. An
analysis of primary studies reveals that both
product as well as process metrics have been used
as predictors for SCP. Table 3 lists the various
metrics used in primary studies for developing
SCP models.

According to Table 3, product metrics espe-
cially structural metrics extracted from source
code design have been widely used in SCP

Software Change Prediction: A Systematic Review and Future Guidelines

233

Table 3. Predictors used by SCP studies

Metric . . Study
category Brief description numbers Category
These metrics are generally source code design metrics, which depict
the structural attributes of a class such as its inheritance, cohe-
Structural s.iveness, size, etc. Mfmy such metric suites have been. prop9sed in PS1
metrics literature such as Chidamber and Kemerer (CK) metrics suite [62], PS38 Product
Quality Models for Object Oriented Design metrics suite [63],
Lorenz and Kidd metrics suite [64], Li and Henry metrics suite [65]
and many others.
These metrics are extracted from the dependency graph of the
Network software and identifies files which are “more central” and are PSI11, Product
metrics more likely to change, e.g. Degree centrality, Closeness centrality, = PS35
Reachability, etc.
PS12,
. These metrics characterize evolution history of a class, i.e. release ~ PS20,
Evolution
based metrics by release history of how a class has evolved in previous versions, PS29, Process
e.g. Birth of a Class, Frequency of changes, Change density, etc. PS33,
PS36
Word . Th(?se metrics quaptlfy the terms used in the source code files and PS35 Product
vector metrics their names by using bag of words approach.
These metrics quantify various developer related factors such as
entropy of changes introduced by a developer in a given time period,
Developer numb(?r of 'developers employed on a 'spec1ﬁc s.()ftware segment in PS29.
. a specific time, structural and semantic scattering of developers in Process
related metrics PS36
a specific time period, etc., e.g. entropy of changes applied by de-
velopers in a given time period, structural scattering of developers
that work on a particular class in a given time period, etc.
Sfoftlg??ﬁg? This metric suite combines structural and evolution-based metrics PS12, Product
. as they quantify two different attributes (software design and PS20, and
and evolution . .
) evolution history) of a class. PS33 Process
based metrics
Metrics such as instability and maintainability index used by PS32, PS32
Others probability of change based on inheritance, reference and depen- P837 Product

dency used by PS3.

literature. It was found that all the studies
evaluated this category of metrics. Even pri-
mary studies which proposed other possible
category of metrics (evolution-based, network,
developer-related, etc.) assessed and compared
their proposed predictors with structural met-
rics as they are well established and success-
fully used by numerous studies. We found that
the CK metrics suite was the most commonly
used structural metrics suite in primary stud-
ies, which characterized various OO attributes.
A similar observation was stated by Radjenovic
et al. [12] while analyzing defect prediction stud-
ies. The CK metrics suite consists of Weighted

Methods of a Class (WMC), Lack of Cohesion
amongst Methods (LCOM), Coupling Between
Objects (CBO), Response for a Class (RFC),
Depth of Inheritance Tree (DIT) and Number
of Children (NOC) metrics. Apart from the CK
metric suite, the SLOC metric (a measure of
class size) has also been frequently used in pri-
mary studies. Other product metrics used were
network metrics, word vector metrics and the
“others” category.

Only 16% of primary studies used process
metrics. While PS12, PS20, PS29, PS33 and
PS36 used evolution-based metrics which char-
acterize the evolution history of a class, PS29

234

Ruchika Malhotra, Megha Khanna

and PS36 used metrics which depict the de-
velopment process complexity by quantifying
developer related factors. It may be noted
that PS12, PS20 and PS33 advocated the com-
bination of both process as well as product
metrics for determining change-prone nature
of a class.

We also analyzed the granularity level over
which these metrics were collected. Five stud-
ies (PS1, PS2, PS11, PS32 and PS35) collected
file-level metrics, one study each collected struc-
tural metrics at interface level (PS10) and method
level (PS4). However, all other studies analyzed
class-level metrics. It may also be noted that cer-
tain studies (PS5, PS7, PS9, PS22, PS23, PS24),
analyzed a large number of OO metrics with re-
spect to different dimensions (cohesion, coupling,
size and inheritance) in order to obtain generalized
results.

5.2. Experimental settings for SCP
(RQ2)

This RQ explores the various experimental set-
tings, i.e. the feature selection or dimensionality
reduction methods, the characteristics of datasets
used for empirical validation, the validation meth-
ods and the performance measures used by SCP
studies.

5.2.1. Feature selection and dimensionality
reduction techniques (RQ2.1)

Primary studies use feature selection or dimen-
sionality reduction techniques to aid the devel-
opment of effective SCP models. We analyzed
these studies to determine the most commonly
used methods (Table 4). An analysis of 38 pri-
mary studies revealed that 58% of them used
either a feature selection or a dimensionality
reduction technique. According to Table 4 the
most commonly used feature selection technique
was Correlation-based Feature Selection (CFS).
Apart from the techniques listed in Table 4,
other primary studies used several other mis-
cellaneous methods (Best-first search (PS12),
Variable Importance (PS15), Rough set analysis
(PS21, PS37), Information Gain (PS21, PS37),

t-test (PS23), Chi-square test (PS37), Genetic
Algorithm (PS23, PS37), Metric Violation Score
(PS27), Wrapper Method (PS36), Consistency
Feature selection (PS37), OneR feature evalua-
tion (PS37)). Apart from feature selection, sev-
eral studies performed correlation analysis to
investigate whether the predictors used are cor-
related with change-proneness attribute (PS8,
PS9, PS10, PS11, PS12, PS13, PS19, PS21, PS22,
PS37).

Certain studies in literature reported spe-
cific OO metrics as effective predictors of
change-prone nature of a class. These metrics
were selected after application of feature selection
or dimensionality reduction techniques. Since, in
RQ1 we reported that the CK metrics suite and
the SLOC metric are popular amongst primary
studies, we state the studies which report these
metrics as effective indicators of change-prone-
ness (Table 5). According to the table, 14 studies
reported metrics which characterize size attribute
(SLOC and WMC) and the ones which charac-
terize coupling attribute (CBO and RFC) as effi-
cient indicators of change-proneness. Moreover,
it may be noted that the inheritance attribute
metric, DIT was only selected as an effective
metric by three studies and there was no study
which selected NOC (another inheritance metric)
as an effective predictor of change-proneness.

5.2.2. Dataset characteristics (RQ2.2)

In order to perform empirical validation, pri-
mary studies have used a number of datasets.
This question explores the characteristics of
these datasets which includes their nature (pub-
lic/private), size, percentage of change and other
attributes.

Software datasets used by primary studies can
be broadly categorized into public/open—source
datasets or private/commercial datasets. We cat-
egorized the datasets in SCP studies and found
that only 5% of these studies used commer-
cial/private datasets. All other SCP studies used
open—source datasets, which are publicly avail-
able. This trend was observed as commercial
datasets are difficult to obtain and is similar to
the one observed by Catal and Diri [10] while

Software Change Prediction: A Systematic Review and Future Guidelines

235

Table 4. Feature selection/dimensionality reduction techniques

Feature selection/dimensionality reduction

Study numbers

Correlation-based Feature Selection (CFS)

Univariate Analysis

Principal Component Analysis (PCA)

Gain Ratio

Multivariate Regression with forward and backward
selection

PS13, PS18, PS19, PS24, PS25, PS26, PS30, PS34
PS35, PS37, PS38

PS21, PS22, PS24, PS28, PS37

PS12, PS20, PS21, PS37

PS21, PS29, PS37

PS3, PS13, PS22

Table 5. OO metrics selected for SCP in primary studies

Metric Acronym OO Attribute

Study Numbers

SLOC Size
PS34, PS37, PS38
WMC Size
CBO Coupling
RFC Coupling
LCOM Cohesion
DIT Inheritance PS20, PS28, PS37

PS4, PS8, PS15, PS18, PS19, PS21, PS24, PS25, PS26, PS28, PS33

PS8, PS15, PS18, PS20, PS22, PS24, PS25, PS28, PS33, PS34

PS8, PS18, PS20, PS21, PS22, PS24, PS25, PS28, PS33, PS37, PS38
PS8, PS13, PS15, PS19, PS20, PS21, PS28, PS37

PS15, PS20, PS21, PS28, PS37

reviewing defect prediction literature. There-
fore, researchers tend to validate their results on
datasets that are open—source and easily avail-
able in software repositories.

We also investigated the language used to de-
velop the datasets, which are used for empirical
validation for SCP. Only four studies (PS1, PS2,
PS15, PS18) used datasets developed using the
C++ language. It may be noted that all other
studies used datasets developed in Java language.

The datasets used in primary studies for SCP
are of varying sizes and with different percentage
of change-prone classes. For each study, we ana-
lyzed the number of datasets used and the mini-
mum and maximum size of datasets in terms of
number of data points, i.e. classes (Table 6). We
also state the minimum and maximum percent-
age of change in the datasets used by these stud-
ies (Table 6). It was noted that certain datasets
were used by more than one primary study. The
name of such datasets and the studies which use
them are listed in Table A2 (Appendix A).

It is also important to evaluate whether the
datasets used for developing models are imbal-
anced in nature. A dataset is said to be im-
balanced if it has a disproportionate number
of change-prone and not change-prone classes.
We state the number of datasets which were

found to be imbalanced for a specific study
in Table 6. As it is more important to deter-
mine the change-prone classes correctly, one
should have sufficient number of change-prone
classes in a dataset for effectively training the
model. We term a dataset as imbalanced if it
has less than 40% of change-prone classes. Stud-
ies from which relevant information could not
be extracted are not shown in the table. Ac-
cording to the information shown in Table 6,
the size of datasets used in primary studies for
SCP varies from 18-3,150 data points. There-
fore, these studies have analyzed small sized,
moderately sized and large-sized datasets for
developing SCP models. It may also be noted
that the percentage of change found in these
datasets varies from 1-97%. However, in a ma-
jority of the studies 25-100% of datasets an-
alyzed were imbalanced in nature. Only few
studies (PS26, PS30, PS35, PS36) addressed
the issue of learning from imbalanced training
data in SCP literature. It is mandatory for re-
searchers to take active steps to develop effec-
tive prediction models from imbalanced datasets
in order to develop reliable and unbiased mod-
els. On the other hand, it should be noted
that though having an imbalanced dataset is
an issue while training the model, it is good

236

Ruchika Malhotra, Megha Khanna

Table 6. Study-wise details of datasets

Number of data points

Percentage of change

Number of datasets

SNo.

Minimum Maximum Minimum Maximum mbalanced datasets (%)
PS1 - 1,211 - 24% 1 (100%)
PS2 - 1,211 - 24% 1 (100%)
PS3 58 169 25% 50% 2 (50%)
PS4 - 58 - 25% 1 (100%)
PS5 18 2,737 - - 15 ()
PS6 44 62 - - 1(-)
PS7 18 958 - - 8 ()
PS8 38 693 - - 3 ()
PS9 38 2,845 - — 102 (-)
PS10 25 165 - - 10 (-)
PS11 98 788 - - 2 ()
PS12 36 170 4% 91% 20 (50%)
PS13 254 657 10% 52% 3 (67%)
PS14 607 2,786 1% 97% 12 (25%)
PS15 108 510 45% 66% 6 (0%)
PS16 - - - - 18 (-)
PS17 36 60 - - 2 (0%)
PS18 108 510 45% 66% 3 (0%)
PS19 685 756 24% 33% 2 (100%)
PS20 36 170 4% 8% 13 (38%)
PS21 - - - - 1(-)
PS22 1,507 1,524 7% 16% 5 (100%)
PS23 83 1,943 30% 68% 10 (30%)
PS24 348 434 4% 30% 2 (100%)
PS25 72 374 19% 63% 6 (50%)
PS26 72 350 6% 3% 6 (100%)
PS27 53 3,150 8% 94% 14 (57%)
PS28 608 1,496 9% 46% 5 (80%)
PS29 - - 19% 35% 20 (100%)
PS30 341 1,505 3% 83% 20 (65%)
PS31 53 3,150 2% 93% 14 (64%)
PS32 86 130 14% 59% 4 (75%)
PS33 210 375 4% 52% 9 (67%)
PS34 78 1,404 29% 88% 10 (40%)
PS35 272 1,705 8% 17% 8 (100%)
PS36 121 2,2,46 22% 3% 33 (100%)
PS37 83 1,943 30% 68% 10 (30%)
PS38 222 1,101 16% 62% 15 (53%)
Note: “~” indicates the corresponding information was not found in the study.

that only few classes are change-prone. There-
fore, only these few classes require constant
monitoring and most of the maintenance re-
sources can be focused on these classes. In case
majority of the classes are change-prone, soft-
ware practitioners might face a tough time man-
aging constraint resources during maintenance

and testing.

5.2.3. Validation methods (RQ2.3)

Studies in literature have used various validation
methods for developing SCP models which can be
broadly categorized into within-project methods
and cross-project methods. Within-project vali-
dation models use training and testing data of the
same software project. The training data used by

Software Change Prediction: A Systematic Review and Future Guidelines

237

the model is obtained from the previous versions
of the same project and is validated on the later
versions. On the contrary, in cross- project valida-
tion, the prediction model is trained using data
from one project (say Project A) and is validated
on another project (Project B). Cross-project
validation is useful in case historical data of the
same software project is not available. Figure 2
depicts the most commonly used validation meth-
ods in SCP studies. An analysis of the figure
reveals that majority of studies developed mod-
els with within-project approach. It can be per-
formed using either hold-out validation, K-fold
cross validation or Leave-one-out Cross Valida-
tion (LOOCV), which are described below:

— LOOCYV: For a dataset having N instances,
this method requires N iterations. In each
iteration, all data points except one are used
as training instances. The remaining data
point is used for validation. It is ensured that
all data points are used at least once for vali-
dating the developed model. Only one study
(PS17) used LOOCV.

— K-fold Cross Validation: The whole dataset
is randomly split into K parts, which are
nearly equal in size. Thereafter, K iterations
are performed. In each iteration, only one
partition is excluded for validation, while all
others are used for training the model. As in
LOOCYV, each partition is used for validation
at least once. The most frequently used value
for K is 10. Only one primary study each
used K = 20 (PS22) and K =5 (PS37). It is
the most popular method for validating SCP
models.

— Hold-out Validation: The available data
points are randomly split into testing and
training sets using a specific ratio. One of
the most common ratio used for partitioning
is 75:25. In such a case, 75% of data points
are used while training and the remaining
25% of data points are used while validation.
However, the method has high variability due
to random division of training and test sets.
The points which make the training and test
sets may affect the performance of the devel-
oped model. Only four studies used hold-out
validation.

Cross Project -
Hold-out -

Validation Method

K-fotd Cross [

0 5 10 15 20 25
Number of Studies

Figure 2. Validation methods in primary studies

Apart from within-project validation, cross-
project validation was used by seven SCP studies
(PS14, PS18, PS23, PS24, PS30, PS31, PS38).
Also, inter-version validation, where different re-
leases of the same dataset are used for training
and validation was used by two studies (PS14,
PS26). We found that k-fold cross validation is
the most popular validation method as it pro-
vides the mean results obtained in various parti-
tions, thereby reducing variability. As a result, the
data is insensitive to the created partitions as in
the case of hold-out validation. PS29 considered
the time dimension for validating the developed
model. They used a three month sliding window
to train and test SCP models as the developers
metrics used by the study encapsulate developer
dynamics in a given time period.

5.2.4. Performance measures (RQ2.4)

The developed SCP models in primary studies

are assessed using various performance measures.

This RQ investigates the most commonly used

performance measures, depicted in Figure 3. The

definitions of these measures are stated as fol-
lows:

— Accuracy: It depicts the percentage of cor-
rectly predicted classes (change-prone and
not change-prone category).

— Recall: Tt is an estimate of the percent-
age of correctly predicted change-prone
classes amongst the total number of actual
change-prone classes. It is also commonly re-
ferred to as Sensitivity. A complementary
measure of Recall is specificity. Specificity rep-
resents the percentage of correctly predicted

238

Ruchika Malhotra, Megha Khanna

not change-prone classes amongst the total
number of actual not change-prone classes.

— Precision: It depicts the percentage of
correctly predicted change-prone classes
amongst the total number of predicted
change-prone classes.

— F-measure: It is computed as the harmonic
mean of recall and precision.

— Area Under Receiver Operating Character-
istic Curve (AUC): It is a plot of recall and
specificity. Recall is depicted on the y-axis,
while a value of 1 specificity is depicted on
the x-axis. The area under the depicted plot
gives an estimate of the model’s performance.

25

20

15
10
5 I
0

Accuracy Recall Precision F-measure

Number of Studies

Performance Measure

Figure 3. Commonly used performance measures in
primary studies

It may be noted that a model which attains
higher value for all the discussed performance
measures is desirable. According to Figure 3, the
most commonly used measure is accuracy. How-
ever, in case of imbalanced datasets, accuracy is
not an appropriate measure [66-68]. Even if the
percentage of correctly predicted change-prone
classes are very few, accuracy values can be high
as the performance measure is not sensitive to
class distributions. On the contrary, the AUC
measure is effective as it takes into account both
recall and 1 specificity. Researchers should use
an appropriate performance measure to yield
unbiased results. Selection of an appropriate per-
formance measure is vital to strengthen the con-
clusion validity of the study. Apart from the mea-
sures shown in Figure 3, there were several other
performance measures (Type I error, Type II er-
ror, Overall misclassification error, False positive

ratio, False negative ratio, Specificity, Probability
of False Alarm (PF), Goodness of fit, J-index,
G-measure, G-mean, Change cost, cost ratio, Bal-
ance, Mathews Correlation Coefficient), which
were used by only few studies.

5.3. Data analysis algorithms
used for SCP (RQ3)

Prediction models require the aid of data analy-
sis algorithms, which can be broadly categorized
into statistical or ML. Statistical algorithms in-
clude regression techniques such as binary Lo-
gistic Regression (LR), polynomial regression or
Linear Discriminant Analysis (LDA). ML algo-
rithms include various categories such as Decision
Trees (DT), Bayesian algorithms, Artificial Neu-
ral Networks (ANN), ensembles, Search-Based
Algorithms (SBA), etc. We first investigate the
most popular category of algorithms for develop-
ing SCP models.

5.3.1. Popular category of data analysis
algorithms (RQ3.1)

Certain primary studies used only a specific cate-
gory of algorithm, i.e. only statistical or only ML,
while certain others used more than one category.
Figure 4 depicts the number of primary studies
using the various categories of algorithms. A new
category of algorithms, i.e. ensembles algorithms
were used by certain studies (PS17, PS20, PS21,
PS23, PS34, PS37, PS38), which were ensemble
of several base learning algorithms. For instance,
PS17 used an ensemble of Multilayer Perceptron
(MLP), Support Vector Machine (SVM), Genetic
Programming (GP), Logistic Regression (LR)
and k-means techniques which were aggregated
using majority voting. According to Figure 4,
ML algorithms are the most popular category,
followed by the statistical algorithms. The disad-
vantage of statistical algorithms over ML ones is
that the models developed using statistical tech-
niques are not easily interpretable [69]. Another
disadvantage of statistical models is that they are
highly reliant on data distribution and are based
on assumptions which may not be fulfilled by
the software product data whose change-prone-

Software Change Prediction: A Systematic Review and Future Guidelines

239

ness is to be predicted [69]. Out of the 38 stud-
ies, three studies did not use any specific algo-
rithm but predicted classes using a certain set of
equations (PS4), by using a combined rank list

(PS8) or by using random effect meta-analysis
model (PS9).

Ensemble -

w. I
0 5 10 15 20 25 30 35
Number of Studies

Figure 4. Categories of techniques

5.3.2. ML algorithms used for SCP (RQ3.2)

The ML algorithms can be further divided into
several categories in accordance with Malhotra
[15]. Table 7 states the various sub-categories of
ML techniques which are used by SCP studies.
These sub-categories are Decision Trees (DT),
Bayesian algorithms, SVM, ML Ensemble, ANN
and SBA. Other remaining algorithms were
grouped into a miscellaneous category.

We further analyzed the percentage of pri-
mary studies which used a specific category of
ML algorithms amongst the primary studies
which used an ML algorithm for SCP (Figure 5).
It was noted that ANN is the most popular cate-
gory of ML algorithms which are used by 53% of
studies. ANN are capable of modeling complex
non-linear relationships and are adaptive in na-
ture making them suitable for change prediction
tasks. The next popular category of techniques
were SBA, used by 41% of studies. It is a subclass
of ML algorithms, which have recently gained
popularity. SBA are self-optimizing techniques,
which are capable of dealing with noisy and im-
precise data. ML ensemble algorithms, which
form several classification models using variants
of training set and use voting scheme to com-

bine these models are also a popular category of
techniques used by 41% of studies.

60
50

40
30
20
0
Q& e&o X S

ML Categories

Change Prediction Studies (%)

Figure 5. Sub-categories of ML algorithms

5.4. Predictive performance
of ML algorithms for SCP (RQ4)

The various ML algorithms investigated in the
primary studies for developing SCP models
should be assessed so as to ascertain their ef-
fectiveness.

5.4.1. Predictive capability of ML algorithms

In order to assess the capability of ML algorithms,
we state the values of popular performance mea-
sures of the developed SCP models. However, we
need to generalize our results and avoid any bias.
This was done by reporting the results of models
developed by those algorithms which were vali-
dated by using at least three different datasets and
by at least two of the primary studies. This would
forbid an algorithm which exhibits exceptional
performance only in a certain study or only by
using certain datasets to be declared as a superior
one. We analyze the statistics in accordance with
the datasets. However, it may be the case that
the performance of a technique varies due to its
application on a specific dataset. Thus, we remove
outlier values in accordance with the investigated
datasets. We also report the median values to
reduce biased results. The following rules were
observed while extracting various statistics [6,15].
The rules are chosen so that optimum values
attained by a technique may be reported. This is

240

Ruchika Malhotra, Megha Khanna

Table 7. Sub-categories of ML algorithms

Sub-category

ML algorithms

Decision Tree
(DT)
Bayesian
SVM

Artificial
Neural
Networks
(ANN)

ML Ensemble
Search Based

C4.5, J48, Classification And Regression Tree (CART)

Naive Bayes (NB), Bayesian Network (BN)
SVM, Linear Kernel SVM, Sigmoid Kernel SVM, Polynomial Kernel SVM, Least-Square
SVM (Linear, Polynomial and RBF kernels)
MLP, MLP with Conjugate Learning (MLP-CG), Radial Basis Function (RBF), Group
Method of Data Handling (GMDH), Extreme ML (Linear, Polynomial and RBF kernels)

Random Forests (RF), Bagging (BG), Adaptive Boosting (AB), LogitBoost (LB)
Ant Colony Optimization (ACO), Constricted Particle Swarm Optimization (CPSO),

Algorithms Decision Tree-GP, Decision Tree- GA (DT-GA), GP, Genetic Expression Programming
(SBA) (GEP), Hierarchical Decision Rules (HIDER), Memetic Pittsburgh Learning Classifier
System (MPLCS), Supervised Classifier System (SUCS), X Classifier System (XCS),
Genetic Algorithm with Adaptive Discretization Intervals (GA-ADI), Fuzzy Learning
based on Genetic Programming Grammar Operators and Simulated Annealing (GFS-SP),
Fuzzy Learning based on Genetic Programming (GFS-GP), Genetic Fuzzy System Ad-
aBoost (GFS-AB), Genetic Fuzzy System- LogitBoost (GFS-LB), Genetic Fuzzy System
MaxLogitBoost (GFS-MLB), Genetic Algorithm with Neural Networks (GANN), Neural
Net Evolutionary Programming (NNEP), Particle Swarm Optimization- Linear Discrimi-
nant Analysis (PSO-LDA); Structural Learning Algorithm in a Vague Environment with
Feature Selection (SLAVE)
Miscellaneous ~ K-Nearest Neighbor (K-NN), k-means, KStar, Non-Nested Generalized Exemplars
(NNGE), PART, Decision Table
100.0004 100.009
Jfreechart 0.7.2 Jfr¢echart 0.7 2|
Jfo hart 0.7 o
80.000 80.00 rgechart 0.7
S 60000 PeerSi 60.00-
© o}
S
(2]
& 40.000 40.00-
20.000+ Junit 20.007
o HiBernate
o o)
000 Hibernate 00
T T T T T T T T T T T T T T T T 1
AB BG C45 K- MLP RBF RF SVM GEP GFS- GFS- GFS- GFS- Hider LB NB NNEP
Means AB GP LB SP
Technique Technique

important as the performance of an ML algorithm

is dependent on its internal parameter settings.

— If a specific study develops models on the -
same dataset more than once with different
experimental settings, we choose the best per-

Figure 6. Dataset-wise accuracy outliers of ML algorithms

formance measure values obtained by the tech-
nique.

In case there is more than one study which
develops models using the same dataset and
the same technique, we use the best of per-

Software Change Prediction: A Systematic Review and Future Guidelines

241

1.000- 10 10
800
600
Q
2 Freechart IVt
400 o
*Jvlt
u stock
200 o
o]
Azureus
000
T T T T T T
AB BG MLP NB RF SVM
Technique

1.000

800
600 ?
400
.200

0007

T T T T
BN Cc45 GEP K-means LB RBF

Technique

Figure 7. Dataset-wise AUC outliers of ML algorithms

formance measure value reported in all the

studies.

According to Section 5.2.4, the most com-
monly used performance measures by SCP stud-
ies are accuracy and AUC. Figure 6 depicts the
dataset-wise outliers of different ML algorithms
with respect to accuracy measure. According to
the figure, the Hibernate dataset was an out-
lier for both MLP and LB algorithms, showing
lower accuracy values than all other investigated
datasets. JFreechart 0.7.2 is exhibited as an out-
lier for GFS-LB, GFS-SP and NNEP algorithms.
Figure 7 depicts the dataset-wise outliers of differ-
ent ML algorithms with respect to AUC measure.
According to the figure, NB, BG, RF and MLP
algorithms were found to have outliers with lower
AUC values except the 10 dataset which had
higher AUC values for BG and RF.

As discussed before, a good change predic-
tion model exhibits higher values of accuracy
and AUC measures. Table 8, 9 presents the com-
parative results of the change prediction models
developed using ML algorithms for the accuracy
and AUC measure respectively. The tables re-
port the statistics values along with the count of
datasets from which the statistics were extracted,
after removing the outliers.

As depicted in Table 8, the majority of ML
techniques (except k-means and SVM) depicted
mean accuracy values in the range 60-80%. The
BG technique depicted the best mean accuracy

value of 81.72%. With respect to median ac-
curacy values, the best median value was de-
picted by the BG technique. As depicted in
Table 9, with respect to AUC, the majority
of ML techniques (except k-means, RBF and
SVM) depicted a mean AUC value in the range
0.65-0.78. Both the BG and RF techniques de-
picted the highest mean AUC value of 0.77.
The best median AUC values were depicted
by AB, RF and BG techniques of 0.76 each.
These results indicate effectiveness of ML tech-
niques in determining change-prone nature of
classes/modules.

It may be noted that the BG, RF and AB
techniques belong to the ensemble category of
ML algorithms. Therefore, their effective predic-
tive capability is a result of aggregation of results
of several base models. This leads to stable and
robust models. It may also be noted that the SBA
(GFS-AB, GFS-GP, GFS-LB, GFS-SP, NNEP,
HIDER) also exhibit good accuracy results. SBA
are effective in optimizing the accuracy of the
developed SCP models. This category of ML
algorithms needs to be further explored as their
results are promising. The statistics reported in
Tables 8, 9 reveal that the use of ML algorithms
for change-proneness prediction tasks should be
encouraged as they yield effective results.

Furthermore, we also conducted a meta-anal-
ysis of the review studies, which reported the
AUC performance measure. This was done in

242

Ruchika Malhotra, Megha Khanna

Table 8. Accuracy results of ML algorithms for SCP models

ML Algorithm Count Minimum Maximum Mean Median S.D.
AB 17 60.00 96.30 78.92 79.90 10.78
BG 16 63.71 96.30 81.72 80.95 9.25
C4.5 11 63.86 77.33 69.95 69.99 3.55
GEP 3 60.00 77.78 70.24 72.94 7.50
GFS-AB 6 74.50 86.20 78.05 76.00 4.06
GFS-GP 6 65.70 84.60 76.38 76.90 5.91
GFS-LB 5 76.00 78.40 77.10 77.00 0.93
GFS-SP 6 69.00 80.20 73.87 73.50 3.56
HIDER 3 71.00 76.00 73.67 74.00 2.05
k-means 16 26.99 91.17 54.51 56.91 18.73
LB 28 12.88 96.61 71.13 78.10 22.75
MLP 38 30.10 96.30 73.00 75.72 16.56
NB 15 59.00 95.38 77.98 7819 10.22
NNEP 6 72.00 77.90 75.25 75.25 1.98
RF 25 57.91 98.18 79.32 75.70 10.58
RBF 27 6.38 98.00 63.32 72.00 24.69
SVM 17 6.38 92.29 53.15 60.33 28.20
S.D. indicates Standard Deviation.
Table 9. AUC results of ML algorithms for SCP models

ML Algorithm Count Minimum Maximum Mean Median S.D.
AB 25 0.47 0.96 0.74 0.76 0.18
BG 32 0.59 0.96 0.77 0.76 0.11
BN 21 0.58 0.91 0.72 0.71 0.09
C4.5 4 0.55 0.80 0.65 0.63 0.09
GEP 3 0.55 0.73 0.66 0.71 0.08
k-means 16 0.11 0.70 0.40 0.34 0.17
LB 31 0.12 0.98 0.65 0.72 0.23
MLP 47 0.24 0.90 0.69 0.74 0.16
NB 32 0.47 0.95 0.74 0.75 0.09
RBF 16 0.12 0.63 0.41 0.42 0.16
RF 31 0.60 0.98 0.77 0.76 0.10
SVM 27 0.11 0.88 0.53 0.51 0.24

S.D. indicates Standard Deviation.

order to evaluate the performance of ML meth-
ods in the domain of SCP. Figure 8 reports the
forest plot of primary studies with the summary
performance measure statistic per study. The
weights to the primary study were allocated on
the basis of standard error, i.e. higher standard
error indicated lower study weight [70]. The con-
fidence interval is computed at 95%. We assessed
the random effects model as the studies were
heterogeneous in terms of datasets, ML methods
and their performance. The overall effect in the
figure indicates that ML methods are effective
for SCP.

5.4.2. Comparative performance of ML
algorithms

We investigate the comparative performance of
various ML algorithms with each other and with
traditional statistical algorithms used for devel-
oping SCP models. The explored hypothesis is
stated as follows:

Null Hypothesis (HO): There is no statistical
difference amongst the performance of different
ML algorithms when compared with each other
and with the statistical technique (LR), while
developing SCP models.

Software Change Prediction: A Systematic Review and Future Guidelines

243

Study
PS10
PS11
PS13 -
PS17| B

PS18
PS20
PS24
PS26
PsS27 -
PS28
PS29
PS31
PS33

Overall

0.|75 0.8
AUC

Figure 8. Forest plot

Alternate Hypothesis (H1): There is signifi-
cant difference amongst the performance of dif-
ferent ML algorithms when compared with each
other and with the statistical technique (LR),
while developing SCP models.

The comparative performance was evaluated
dataset-wise and the rules were similar to the
ones followed in RQ4. Furthermore, Wilcoxon
signed rank test was performed at a significance
level of 0.05 for statistical evaluation of the com-
parative results. We compared the performance
of 17 ML algorithms namely, MLP, BG, AB,
RF, RBF, SVM, C4.5, k-means, LB, HIDER,
GFS-AB, GFS-GP, GFS-LB, GFS-SP, NNEP,
NB and BN amongst each other and with LR.
LR is chosen as it is the most common statisti-
cal algorithm used in SCP literature. The other
ML algorithms were chosen as we could extract
sufficient data from primary studies for their
comparison.

Tables 10, 11 report the results of the
Wilcoxon signed rank test when different algo-
rithms are compared with one another and with
the LR algorithm according to accuracy and
AUC performance measures respectively. The
symbols used in the table represent whether the
performance of the technique stated in the row

is significantly superior (BT*), significantly infe-
rior (WR*), superior but not significantly (BT),
inferior but not significantly (WR) or equivalent
(=), when compared with the technique stated
in the column. We consider the two compared
techniques as equivalent when the pairwise com-
parison amongst the techniques yield equal num-
ber of negative and positive ranks in Wilcoxon
signed rank test. According to Table 10, the
MLP technique shows significantly better perfor-
mance than LR, C4.5 and NB techniques in terms
of accuracy measure. The performance of MLP
technique is worse but not significantly, when
compared with the AB technique. MLP’s accu-
racy performance is better than RF, RBF, SVM,
k-means and LB techniques but not significantly.
The Wilcoxon test results according to AUC
measure depicted in Table 11 show that the RF,
LB, BN and NB algorithms showed significantly
better AUC performance than various other algo-
rithms. The MLP algorithm also depicts better
AUC values than five other compared algorithms,
but not significantly.

It may be noted from the results of Table 10,
11 that three ML algorithms depicted better ac-
curacy results than the statistical algorithm, LR.
However, four algorithms (SVM, GFS-SP, NNEP

Ruchika Malhotra, Megha Khanna

244

1T 9[qe], Se oures S[oqUIAG

- «Ld aN L9 L9 pLd Ld 1Ld M «Ld dM «Ld Nd
*dM - dN Ld UM aN dN aN dN Ld dN UM Sueom-5f
1Ld dN - dN dN aN daN aN dN dN dN UM gvO
xdM UM dN - UM aN UM dM M Ld dN UM A4
*dM Ld dN Ld - UM UM Ld M «Ld «dM «1Ld d7T
UM aN dN Ld 1Ld 1Ld - 1Ld Ld Ld «Ld xLd a4
UM dN dN Ld UM 1Ld UM - *dM L sdM 1d qav
1Ld aN dN Ld NRS 1Ld UM «1d - Id «dM x1d 0d
*dM M AN UM sdM M M I dM - UM M INAS
1d dN dN dN SON JES IRON 1 ERORS DA\ GRON 1S BN R 3| Ld - UM dN
xdM Ld Ld L «dM «dM «dM I 9 1d Ld - dTIN
Nd sueewi-y GyDH AdY S| 1T a4 av Dd IWAS AN dJTIN enbruydag,

“JSH YHIm pareduwrod aq jouued SaNDIUYDIS) 99 S9)edTpul

(s3nsoI 1593 UOXOD[IA) DINsRIW)|y UO paseq swryLiod[e TN jo uostreduro)) “TT o[qe],

[7t]

{pajoeIIXe 9q j0u Pnod eyep uostreduwrod 9)1smbar seyedrpur (N,

{S1INSaI JUeOYIUSIS 10U IN(9SIOM SURBIW AN, PUR SINSOI 9SI0M ATIURIYIUSIS S9JRITPUL M,
UeOYIUSISUL 0] 10330¢] I, ‘SHNSAT 10339q A[JUROPIUSLS (L, *SURIW-Y (M ‘dD-SADdDD ‘dT-SAD AT *dS-SdD ‘dSD ‘dV-SdD :dvD

- dN aN dN aN aN dN *xdM AN AN daN dN aN «dM I I dM dN
dN - 1Ld M 1Ld UM 1d dN dN dN dN dN UM daN 1Ld dN dN dUNN
dN UM - UM 1Ld UM UM dN N dN dN N UM daN 1Ld dN dN dS-SdD
daN Ld 1Ld - 1Ld 1Ld aN daN dN dN daN daN aN daN aN aN dN d71-SdD
dN M UM M - M aN dN dN dN dN dN dN dN dN dN adN dO-SdD
dN Ld 1Ld UM 1Ld - aN dN dN dN dN dN aN dN aN dN dN dv-Sdd
dN M 1Ld dN aN aN - dN dN dN dN dN aN daN 1Ld aN dN HAIAIH
«Ld dN dN dN dN aN aN - ILd dN «1d Ld N M 1Ld Ld M a1
aN dN aN dN aN aN aN UM - aN Ld Ld aN dN aN dN UM suesl-y
aN dN aN dN aN aN aN dN aN - aN «dM AN s«9dM dN aN «dM SN %0)
dN dN aN dN dN aN daN +dM UM AN - AN UM dN dN dN M INAS
dN dN aN dN aN aN dN M dM «1d 1d - aN 1d aN dN UM GESk!
«Ld dN aN dN aN aN aN Ld N «Id9d dN M «1d - rLd Ld M a4
« L9 M UM dN dN dN M M AN dN dN N 9 M 9M - UM Ld av
Ld dN aN dN aN aN aN M AN dN dN dN Ld UM Ld - «Ld 0d
PARS dN aN dN aN aN aN Ld Id «1d 1d Ld «Ld 149 UM UM - dTIN
AN dUNN dSO dTO dOD dvd YddIH d1 WM S7D WAS ddd Y1 JY4 dav od dTIN 081y

(S)INSAI 1899 UOXOI[IAY) SINSLOW ADRINDIOR U0 Paseq swjLIod[e TN Jo uostreduwro)) (T 9[qRL

Software Change Prediction: A Systematic Review and Future Guidelines

245

and AB) showed worse accuracy results than LR.
With respect to AUC, five ML techniques were
found better than LR and three were found worse
than LR. This indicates effective performance
of ML algorithms when compared to that of
the LR algorithm. However, more studies need
to be conducted for an extensive comparison of
various ML algorithms with that of LR. Also,
as a number of columns in Tables 10, 11 have
the value “ND”, where sufficient data was not
found to compare the predictive ability of ML
algorithms. Therefore, more studies are needed
which perform extensive comparison of different
ML algorithms with each other based on different
performance measures. However, on the basis of
current analysis we reject the null hypothesis HO.

5.5. Statistical tests used by SCP studies
(RQ5)

Statistical verification of a study’s results is im-
portant in order to yield reliable conclusions.
66% of primary studies used statistical tests
for validating their results. These tests can
be broadly categorized as parametric tests or
non-parametric tests.

Twenty-five primary studies which predicted
change-prone nature of a class/module statis-
tically validated their results. Out of these 25
studies, 88% of studies used non-parametric tests,
while the others used parametric tests. This trend
was observed as parametric tests require stringent
assumptions which should be fulfilled before their
application. In order to verify the assumptions
of normal tests, we require complete informa-
tion about the population distribution. Though
these characteristics make normal tests powerful
but they are harder to apply when compared
with non-parametric tests. Non-parametric tests
are easy to understand and use. Thus, they are
favored by the research community. Figure 9
states the number of studies using the most com-
monly used statistical tests. These tests were the
Wilcoxon signed rank test, Friedman test, t-test,
Scott—Knott test and Cliff’s test used by 15, 9, 2,
2 and 2 studies respectively. The most popular
test was Wilcoxon signed rank test. The popular-
ity of Wilcoxon test is due to its non-parametric

nature. Moreover, the test can be used individu-
ally for pairwise comparisons or as a post-hoc test
after the application of Friedman test [6]. Certain
other tests (ANOVA, Mann-Whitney, Nemenyi,

Proportion) were used by one study each.

16
14
12
£ 10
=
2 8
172}
= 6
5 4
E 2
Z 0 H B BN
Wilcoxon Friedman T-test Scott Cliff's Test
Signed Knott
Rank
Statitical Test

Figure 9. Statistical tests used in primary studies

5.6. Threats to validity in SCP studies
(RQ6)

This RQ extracts and analyzes the threats to
empirical studies which develop SCP models. It
is essential for a researcher to scrutinize all prob-
able threats in the early phases of an experiment
so that the obtained results are valid and re-
liable. This would ensure proper experimental
design so that majority of identified threats can
be mitigated. Furthermore, one should mention
the probable threats so that the readers are aware
of the limitations. We extracted the threats from
the primary studies of the review, which have
a separate section for “Threats to validity” or
“Limitations”.

5.6.1. Categories of threats (RQ6.1)

The probable threats to SCP studies are cate-
gorized into conclusion, internal, construct and
external threats.

Table 12 states the various threats corre-
sponding to each category along with the studies
which state them. It may be noted that we state
only those threats which are mentioned in at least
two or more primary studies. Threats specific to
a study’s experimental design are omitted to

246

Ruchika Malhotra, Megha Khanna

Table 12. Threats to validity in SCP studies

Threat No.

Category

Threat Description (Study Numbers)

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

T12

T13

T14

T15

T16

T17

T18

Conclusion

Conclusion

Conclusion

Internal

Internal

Internal

Internal

Construct

Construct

Construct

Construct

Construct

Construct

External

External

External

External

External

Absence of appropriate statistical tests for validating study’s results. (PS10,
PS16, PS25, PS26, PS29, PS33, PS34, PS36, PS38).

Absence of multiple and stable performance measures. (PS25, PS26, PS29,
PS33, PS36, PS38).

Not accounting for validation bias by using inappropriate validation method,
(PS25, PS26, PS29, PS33, PS34, PS38).

Omittance of significant variables that act as predictors or may affect the
predictors, (PS3, PS11, PS31).

Inability to address the confounding effect of other variables such as class size
or other factors (such as developer experience, application domain, etc.) on
the relationship between dependent and independent variables, (PS9, PS12,
PS27, PS33).

Does not account for the “causal effect” of the predictors on the target variable,
(PS11, PS12, PS13, PS19, PS24, PS25, PS26, PS32).

Does not account for different rules or thresholds for computing the dependent
and the independent variables, (PS9, PS10, PS24, PS27, PS29).

The type of change, i.e. whether it is corrective, adaptive, perfective or preven-
tive is not taken into account, (PS9, PS12, PS13, PS19, PS24, PS29, PS36,
PS38).

OO metrics may not be accurate representatives of the OO concepts they
propose to measure, (PS9, PS12, PS19, PS24, PS25, PS26, PS33, PS34, PS38).
Independent variables (OO metrics) and dependent variable may not be cor-
rectly collected, (PS9, PS11, PS12, PS13, PS16, PS19, PS21, PS24, PS25,
PS26, PS32, PS34).

There may be possible imprecisions in computation of change-proneness at-
tribute, (PS29, PS32, PS36, PS38).

The severity of change and the effort spent by software practitioners in changing
code fragment is not taken into account while computing change-proneness,
(PS29, PS21, PS36).

Absence of data pre-processing to eliminate noisy data or feature selection for
choosing effective feature sets, (PS11, PS26, PS29, PS33, PS36).

Obtained results may be specific to a certain domain, i.e. all validated datasets
belonging to the same domain, (PS3, PS10, PS11, PS12, PS19, PS21, PS25,
PS26, PS29, PS34, PS35, PS36, PS38).

Obtained results may not be validated on datasets of appropriate size or
appropriate number of datasets, (PS10, PS12 PS13, PS16, PS19, PS22, PS24,
PS26, PS27, PS29, PS31 PS32, PS34, PS35, PS36, PS38).

Obtained results may not be easily replicated, (PS10, PS16, PS25, PS26, PS33,
PS34, PS38).

Obtained results may not be validated on industrial datasets, (PS16, PS22,
PS31).

Obtained results may not be validated on datasets developed using different
programming languages or programming paradigms, (PS13, PS16, PS21, PS24,
PS25, PS26, PS27, PS29, PS31, PS32, PS33, PS34, PS36, PS38).

yield unbiased results. As stated in Table 12, we 5.6.2. Mitigation of threats (RQ6.2)

found 3 conclusion validity threats, 4 threats to

internal validity, 6 construct validity threats and This RQ explores how the various threats iden-
5 external validity threats. It may be noted that tified in RQ7.1 are addressed by the primary
T16 was also referred to as “Reliability threat” studies. We state the steps suggested by primary

in two studies.

studies to mitigate the corresponding threats

Software Change Prediction: A Systematic Review and Future Guidelines

247

Table 13. Mitigation of threats to validity in SCP studies

Threat No.

Threat Mitigation

T1

T2

T3

T5

T6

T7

T9

T10

T11

T13

T14
T15

T16

T17

T18

The results of a study should be validated using proper statistical tests. In case the underlying
data does not fulfill the assumptions of a parametric statistical test, non-parametric statistical
tests may be used.

Multiple and stable performance measures should be used which give a realistic estimate of
the model’s performance.

One should use an appropriate validation method so that the results are not biased due to
selection of training and testing datasets.

The confounding effect of variables may be evaluated by first building a univariate regression
model of the confounding variable C' on each predictor P. Thereafter, find the difference
between predicted values by the regression model from P to obtain a new variable P’. The
obtained P’ is free from confounding effect.

Controlled experiments should be carried out where only one specific predictor variable
should be varied while keeping all other variables constant to determine the “causal” effect
of predictor variables.

Additional thresholds or rules may be used to determine the impact of these on dependent
and the independent variables.

OO metrics which are commonly used in literature and have been validated by previous
studies may be used.

The tools used for collecting independent and dependent variables should be manually
verified to ascertain their correctness. The use of public datasets, which have been verified
by previous studies also mitigate the threat.

Strategies which have been well recognized in previous literature studies for computation of
change-proneness attribute should be adopted, i.e. designation of a class as change-prone
or not change-prone should be done in accordance with the definitions that have been well
established in the past such as those followed by [9,12].

Effective data pre-processing strategies should be adopted for eliminating noisy data. More-
over, selection or extraction methods should be used for selecting relevant features.

The results should be validated on datasets belonging to different domains.

The results should be validated on datasets of appropriate size and on an appropriate number
of datasets.

The use of open—source datasets enhances the replicability of the study. Furthermore, the
tools used to implement the approach should be available. The steps conducted in the
experiment should be clearly presented to ease replicated experiments.

The results should be validated on industrial datasets or datasets whose characteristics are
similar to industrial datasets.

The results should be validated on datasets developed using different programming languages.

in Table 13. The table states the mitigation of
only those threats, whose mitigation could be

to obtain generalized results in the domain of

SCP.

extracted from primary studies.
The threats which were only mentioned in the

“Threats to Validity” section of primary studies
(T4, T8, T12), but could not be mitigated by the
study or whose mitigation was not suggested are
not stated in the table. Researchers should in-
corporate these steps (Table 13), while designing
the experimental set-ups of their study in order
to ensure reliable results. Also, several studies
should be performed with different size, cate-
gory, domain and other dataset characteristics

6. Threats to validity

While searching for relevant candidate studies,
we applied the search string to only the titles of
the studies. Thus, we may fail to include studies
which do not use the key terms in their titles.
However, as we have extensively searched for can-
didate studies in the mentioned search databases,
have included journal as well as conference stud-

248

Ruchika Malhotra, Megha Khanna

ies, have searched for key authors and have also
searched the reference lists of the included papers,
we are positive that we have not missed a relevant
study. It may be noted that the review is based
on the presumption that all the primary studies
are unprejudiced. In case, this is not true, there is
a possible threat to the review results [6,71] The
review also rules out all unpublished results [6].

In order to extract primary studies from can-
didate studies, both the authors independently
applied the quality assessment criteria on each
study. This practice ensures conclusion validity
of the obtained results. Publication bias is a pos-
sible threat to the results of this review. In lieu of
publication bias, it is highly likely that a primary
study would publish positive results on appli-
cation of a ML technique for developing SCP
model as compared to negative results [72]. It
could also be a scenario where researchers might
claim that their proposed technique outperforms
other established techniques in literature. This
could lead to an exaggeration of the capability
of ML techniques for developing SCP models.
This threat was addressed in two ways. Firstly,
we included primary studies which “reported
and compared various data analysis algorithms
amongst themselves for developing SCP models™.
These studies are unlikely to be biased towards
specific ML techniques as they do not propose
a data analysis algorithm of their own. Secondly,
while comparing the predictive capability of ML
techniques, we compared only those techniques
which were “validated on at least three differ-
ent datasets and were used by at least two pri-
mary studies” to avoid bias. Also, the statistics
reported in the review were dataset wise after
removal of outliers. Furthermore, we state the
median values to get a realistic estimate of the
capability of ML techniques for developing SCP
models.

While evaluating the predictive capability of
ML techniques, we also state the AUC results
apart from accuracy results. Thus, we have ac-
counted for possible bias which could occur by
using imbalanced data as AUC is a stable per-
formance measure.

In order to statistically compare the perfor-
mance of ML techniques for developing SCP

models (Table 9, 10), we have conducted several
tests. However, certain erroneous inferences may
occur due to conduct of several tests on the same
data. This threat exists in the study.

7. Conclusions and future guidelines

An extensive systematic review was performed
to analyze the current state of existing literature
in the domain of SCP and to further identify
research gaps in this domain. 38 primary studies
were chosen to answer the various RQs. In lieu of
the result discussions with respect to the explored

RQs, we suggest certain guidelines to researchers

in the SCP domain which are mentioned below.

— The product metrics especially the CK met-
rics suite have been widely used in primary
studies for developing SCP models. However,
the validation of process metrics and their
combination with product metrics is limited
in this domain. Researchers should conduct
studies to assess the capability of only pro-
cess metrics as well as a combination of both
process and product metrics as predictors of
software change.

— Feature selection/dimensionality reduction
techniques have been used by a majority of
studies. However, more studies should exam-
ine effective predictors using feature selection
techniques in order to develop efficient SCP
models.

— Most of the datasets used by the primary
studies were open—source in nature. However,
more studies should be conducted to validate
commercial datasets to yield practical and
generalized results. Also, datasets developed
using other languages such as C#, Python,
etc. needs to be evaluated by literature stud-
ies.

— It was observed that 25-100% of datasets
in a majority of the SCP studies were imbal-
anced in nature (had less than 40% of changed
classes). Researchers in future should evalu-
ate methods to develop effective models from
imbalanced datasets as correct identification
of change-prone classes is crucial. This would
aid developers in prioritizing their resources

Software Change Prediction: A Systematic Review and Future Guidelines

249

effectively during maintenance and testing
phases of a software development lifecycle.
Within project validation has become a com-
mon standard while validating SCP mod-
els. Though, cross-project validation has also
been investigated, however, studies in the
future should explore cross-organization and
cross-company validation. Effective transfer
learning in cross-organization and cross-com-
pany scenario is the need of the hour, which
should be actively investigated by researchers
in future studies. Furthermore, temporal val-
idation, which takes into account the time
dimension should also be explored in the SCP
domain.

Apart from accuracy, the use of AUC mea-
sure is prominent in literature for evaluating
SCP models. Stable performance measures
such as AUC should be used by researchers in
future as they give a realistic estimate of the
performance of models which are developed
from imbalanced datasets.

It was observed that a majority of studies
used ML algorithms and these algorithms are
effective in the domain of SCP. However, more
studies should be conducted which assess and
compare the effectiveness of statistical and
ML algorithms for SCP as we could find lim-
ited data in literature which compares the
performance of different algorithms for de-
veloping effective SCP models. Also, more
researchers should explore the use of ensem-
ble of algorithms as an alternative to other
data analysis algorithms for developing SCP
models.

It was found that SBA (HIDER, GFS-AB,
GFS-GP, GFS-LB, GFS-SP and NNEP) ex-
hibited effective accuracy results. However,
data to assess and compare the ability of
SBA’s was limited. More studies which inves-
tigate the effectiveness of SBA in the domain
of SCP are required to yield conclusive results
about their capability. Studies should be con-
ducted to evaluate the effectiveness of SBA
and compare their performance with other
established ML and statistical techniques.
The results indicate that a majority (66%)
of primary studies use statistical tests for

verifying the obtained results. This is a good
practice which should be continued in future
studies.

It is mandatory to account for possible
“Threats to Validity”, while designing experi-
ments to yield effective and reliable results.
Though there are a number of research papers

that illustrate quantitative results from SCP in

lab

environments, there is a need for longitudinal

studies with developers in industry that focuses

on

qualitative research so that the effectiveness

of SCP models in industry may be understood
in depth.

References

[1]

A.G. Koru and H. Liu, “Identifying and charac-
terizing change-prone classes in two large-scale
open-source products,” Journal of Systems and
Software, Vol. 80, No. 1, 2007, pp. 63-73.

Y. Zhou, H. Leung, and B. Xu, “Examining the
potentially confounding effect of class size on
the associations between object-oriented metrics
and change-proneness,” IFEE Transactions on
Software Engineering, Vol. 35, No. 5, 2009, pp.
607—-623.

A.G. Koru and J. Tian, “Comparing high-change
modules and modules with the highest measure-
ment values in two large-scale open-source prod-
ucts,” IEEE Transactions on Software Engineer-
ing, Vol. 31, No. 8, 2005, pp. 625—642.

E. Arisholm, L.C. Briand, and A. Foyen, “Dy-
namic coupling measurement for object-oriented
software,” IEFE Transactions on software engi-
neering, Vol. 30, No. 8, 2004, pp. 491-506.

B.A. Kitchenham, D. Budgen, and P. Brereton,
Evidence-based software engineering and system-
atic reviews. CRC Press, 2015, Vol. 4.

R. Malhotra, M. Khanna, and R.R. Raje, “On
the application of search-based techniques for
software engineering predictive modeling: A sys-
tematic review and future directions,” Swarm
and Evolutionary Computation, Vol. 32, 2017,
pp- 85-109.

R. Malhotra and M. Khanna, “Threats to va-
lidity in search-based predictive modelling for
software engineering,” IET Software, Vol. 12,
No. 4, 2018, pp. 293-305.

D. Godara and R. Singh, “A review of studies on
change proneness prediction in object oriented
software,” International Journal of Computer
Applications, Vol. 105, No. 3, 2014, pp. 35—41.

250

Ruchika Malhotra, Megha Khanna

[9]

[10]

[11]

[12]

[13]

[17]

[18]

R. Malhotra and A.J. Bansal, “Software change
prediction: A literature review,” International
Journal of Computer Applications in Technology,
Vol. 54, No. 4, 2016, pp. 240-256.

C. Catal and B. Diri, “A systematic review of
software fault prediction studies,” Ezpert sys-
tems with applications, Vol. 36, No. 4, 2009, pp.
7346-7354.

T. Hall, S. Beecham, D. Bowes, D. Gray, and
S. Counsell, “A systematic literature review on
fault prediction performance in software engi-
neering,” IEEE Transactions on Software Engi-
neering, Vol. 38, No. 6, 2011, pp. 1276-1304.
D. Radjenovié, M. Hericko, R. Torkar, and
A. Zivkovi¢, “Software fault prediction metrics:
A systematic literature review,” Information and
Software Technology, Vol. 55, No. 8, 2013, pp.
1397-1418.

R.S. Wahono, “A systematic literature review
of software defect prediction: research trends,
datasets, methods and frameworks,” Journal of
Software Engineering, Vol. 1, No. 1, 2015, pp.
1-16.

S. Hosseini, B. Turhan, and D. Gunarathna,
“A systematic literature review and meta-analysis
on cross project defect prediction,” IEEE Trans-
actions on Software Engineering, Vol. 45, No. 2,
2017, pp. 111-147.

R. Malhotra, “A systematic review of machine
learning techniques for software fault predic-
tion,” Applied Soft Computing, Vol. 27, 2015,
pp. 504-518.

P.K. Singh, D. Agarwal, and A. Gupta, “A sys-
tematic review on software defect prediction,” in
2nd International Conference on Computing for
Sustainable Global Development (INDIACom,).
IEEE, 2015, pp. 1793-1797.

C. Catal, “Software fault prediction: A literature
review and current trends,” Expert systems with
applications, Vol. 38, No. 4, 2011, pp. 4626-4636.
X. Zhu, Y. He, L. Cheng, X. Jia, and L. Zhu,
“Software change-proneness prediction through
combination of bagging and resampling meth-
ods,” Journal of Software: Evolution and Process,
Vol. 30, No. 12, 2018, p. e2111.

G. Catolino and F. Ferrucci, “An extensive evalu-
ation of ensemble techniques for software change
prediction,” Journal of Software: Evolution and
Process, 2019, p. e2156.

G. Catolino, F. Palomba, A. De Lucia, F. Fer-
rucci, and A. Zaidman, “Enhancing change pre-
diction models using developer-related factors,”
Journal of Systems and Software, Vol. 143, 2018,
pp. 14-28.

[21]

23]

[26]

[27]

[28]

[29]

[30]

[31]

R. Malhotra and M. Khanna, “Dynamic selection
of fitness function for software change prediction
using particle swarm optimization,” Informa-
tion and Software Technology, Vol. 112, 2019, pp.
51-67.

L. Kumar, S. Lal, A. Goyal, and N. Murthy,
“Change-proneness of object-oriented software
using combination of feature selection techniques
and ensemble learning techniques,” in Proceed-
ings of the 12th Innovations on Software Engi-
neering Conference. ACM, 2019, p. 8.

Y. Ge, M. Chen, C. Liu, F. Chen, S. Huang, and
H. Wang, “Deep metric learning for software
change-proneness prediction,” in International
Conference on Intelligent Science and Big Data
Engineering. Springer, 2018, pp. 287-300.

H. Lu, Y. Zhou, B. Xu, H. Leung, and L. Chen,
“The ability of object-oriented metrics to predict
change-proneness: a meta-analysis,” Empirical
software engineering, Vol. 17, No. 3, 2012, pp.
200-242.

M.O. Elish and M. Al-Rahman Al-Khiaty,
“A suite of metrics for quantifying historical
changes to predict future change-prone classes in
object-oriented software,” Journal of Software:
FEvolution and Process, Vol. 25, No. 5, 2013, pp.
407-437.

R. Malhotra and M. Khanna, “An ex-
ploratory study for software change predic-
tion in object-oriented systems using hybridized
techniques,” Automated Software Engineering,
Vol. 24, No. 3, 2017, pp. 673-717.

D. Romano and M. Pinzger, “Using source code
metrics to predict change-prone java interfaces,”
in 27th International Conference on Software
Maintenance (ICSM). IEEE, 2011, pp. 303-312.
E. Giger, M. Pinzger, and H.C. Gall, “Can we
predict types of code changes? An empirical
analysis,” in 9th Working Conference on Mining
Software Repositories (MSR). IEEE, 2012, pp.
217-226.

D. Azar and J. Vybihal, “An ant colony opti-
mization algorithm to improve software quality
prediction models: Case of class stability,” Infor-
mation and Software Technology, Vol. 53, No. 4,
2011, pp. 388-393.

S. Karus and M. Dumas, “Code churn estimation
using organisational and code metrics: An exper-
imental comparison,” Information and Software
Technology, Vol. 54, No. 2, 2012, pp. 203-211.
J.M. Bieman, G. Straw, H. Wang, P.W. Munger,
and R.T. Alexander, “Design patterns and
change proneness: An examination of five evolv-
ing systems,” in Proceedings. 5th International

Software Change Prediction: A Systematic Review and Future Guidelines

251

[32]

[33]

[34]

[37]

Workshop on Enterprise Networking and Com-
puting in Healthcare Industry (IEEE Cat. No.
03EX717). IEEE, 2004, pp. 40—49.

N. Zazworka, C. Izurieta, S. Wong, Y. Cai,
C. Seaman, F. Shull et al., “Comparing four ap-
proaches for technical debt identification,” Soft-
ware Quality Journal, Vol. 22, No. 3, 2014, pp.
403-426.

X. Zhu, Q. Song, and Z. Sun, “Automated iden-
tification of change-prone classes in open source
software projects.” Journal of Software, Vol. 8,
No. 2, 2013, pp. 361-366.

M. Lindvall, “Are large C++ classes
change-prone? An empirical investigation,”
Software: Practice and Experience, Vol. 28,
No. 15, 1998, pp. 1551-1558.

M. Lindvall, “Measurement of change: stable
and change-prone constructs in a commercial
C++ system,” in Proceedings Sixzth International
Software Metrics Symposium. IEEE, 1999, pp.
40-49.

Y. Liu and T.M. Khoshgoftaar, “Genetic pro-
gramming model for software quality classifica-
tion,” in Proceedings Sixth International Sympo-
stum on High Assurance Systems Engineering.
Special Topic: Impact of Networking. IEEE, 2001,
pp. 127-136.

M. Al-Khiaty, R. Abdel-Aal, and M.O. El-
ish, “Abductive network ensembles for improved
prediction of future change-prone classes in
object-oriented software.” International Arab
Journal of Information Technology, Vol. 14,
No. 6, 2017, pp. 803-811.

T.M. Khoshgoftaar, N. Seliya, and Y. Liu, “Ge-
netic programming-based decision trees for soft-
ware quality classification,” in 15th International
Conference on Tools with Artificial Intelligence.
IEEE, 2003, pp. 374-383.

L. Kumar, S.K. Rath, and A. Sureka, “Empirical
analysis on effectiveness of source code metrics
for predicting change-proneness,” in 10th Innova-
tions in Software Engineering Conference. ACM,
2017, pp. 4-14.

N. Tsantalis, A. Chatzigeorgiou, and
G. Stephanides, “Predicting the probability
of change in object-oriented systems,” IEEE
Tramsactions on Software Engineering, Vol. 31,
No. 7, 2005, pp. 601-614.

L. Kumar, S.K. Rath, and A. Sureka, “Using
source code metrics to predict change-prone web
services: A case-study on ebay services,” in Work-
shop on Machine Learning Techniques for Soft-
ware Quality Evaluation (MaLTeSQuE). IEEE,
2017, pp. 1-7.

[42]

[43]

[50]

[51]

[52]

A R. Sharafat and L. Tahvildari, “Change predic-
tion in object-oriented software systems: A prob-
abilistic approach,” Journal of Software, Vol. 3,
No. 5, 2008, pp. 26—39.

L. Kumar, R.K. Behera, S. Rath, and
A. Sureka, “Transfer learning for cross-project
change-proneness prediction in object-oriented
software systems: A feasibility analysis,” ACM
SIGSOFT Software Engineering Notes, Vol. 42,
No. 3, 2017, pp. 1-11.

D. Azar, “A genetic algorithm for improving
accuracy of software quality predictive models:
a search-based software engineering approach,”
International Journal of Computational Intelli-
gence and Applications, Vol. 9, No. 02, 2010, pp.
125-136.

R. Malhotra and R. Jangra, “Prediction and as-
sessment of change prone classes using statistical
and machine learning techniques,” Journal of
Information Processing Systems, Vol. 13, No. 4,
2017, pp. 778-804.

A.R. Han, S.U. Jeon, D.H. Bae, and J.E. Hong,
“Measuring behavioral dependency for improving
change-proneness prediction in uml-based de-
sign models,” Journal of Systems and Software,
Vol. 83, No. 2, 2010, pp. 222-234.

R. Malhotra and M. Khanna, “An empirical
study for software change prediction using im-
balanced data,” Empirical Software Engineering,
Vol. 22, No. 6, 2017, pp. 2806-2851.

S. Eski and F. Buzluca, “An empirical study on
object-oriented metrics and software evolution
in order to reduce testing costs by predicting
change-prone classes,” in Fourth International
Conference on Software Testing, Verification and
Validation Workshops. IEEE, 2011, pp. 566-571.
M. Yan, X. Zhang, C. Liu, L. Xu, M. Yang, and
D. Yang, “Automated change-prone class pre-
diction on unlabeled dataset using unsupervised
method,” Information and Software Technology,
Vol. 92, 2017, pp. 1-16.

A. Agrawal and R.K. Singh, “Empirical valida-
tion of OO metrics and machine learning algo-
rithms for software change proneness prediction,”
in Towards Extensible and Adaptable Methods in
Computing. Springer, 2018, pp. 69-84.

C. Liu, Y. Dan, X. Xin, Y. Meng, and Z. Xiao-
hong, “Cross-project change-proneness predic-
tion,” in 42nd Annual Computer Software and
Applications Conference (COMPSAC). IEEE,
2018, pp. 64-73.

R. Malhotra and M. Khanna, “Investigation of
relationship between object-oriented metrics and
change proneness,” International Journal of Ma-

252

Ruchika Malhotra, Megha Khanna

[54]

[61]

chine Learning and Cybernetics, Vol. 4, No. 4,
2013, pp. 273-286.

L. Kaur and M. Ashutosh, “A comparative anal-
ysis of evolutionary algorithms for the prediction
of software change,” in International Conference
on Innovations in Information Technology (IIT).
IEEE, 2018, pp. 188-192.

R. Malhotra and A.J. Bansal, “Cross project
change prediction using open source projects,”
in International Conference on Advances in
Computing, Communications and Informatics
(ICACCI). IEEE, 2014, pp. 201-207.

R. Malhotra and M. Khanna, “Prediction of
change prone classes using evolution-based and
object-oriented metrics,” Journal of Intelligent
and Robotic Systems Fuzzy Systems, Vol. 34,
No. 3, 2018, pp. 1755-1766.

R. Malhotra and M. Khanna, “A new metric for
predicting software change using gene expression
programming,” in 5th International Workshop
on Emerging Trends in Software Metrics. ACM,
2014, pp. 8-14.

R. Malhotra and M. Khanna, “Particle swarm
optimization-based ensemble learning for soft-
ware change prediction,” Information and Soft-
ware Technology, Vol. 102, 2018, pp. 65-84.

C. Marinescu, “How good is genetic program-
ming at predicting changes and defects?” in
16th International Symposium on Symbolic and
Numeric Algorithms for Scientific Computing
(SYNASC). IEEE, 2014, pp. 544-548.

M.O. Elish, H. Aljamaan, and I. Ahmad, “Three
empirical studies on predicting software main-
tainability using ensemble methods,” Soft Com-
puting, Vol. 19, No. 9, 2015, pp. 2511-2524.

R. Malhotra and M. Khanna, “Mining the im-
pact of object oriented metrics for change pre-
diction using machine learning and search-based
techniques,” in International Conference on Ad-
vances in Computing, Communications and In-
formatics (ICACCI). IEEE, 2015, pp. 228-234.
A. Bansal, “Empirical analysis of search based al-
gorithms to identify change prone classes of open
source software,” Computer Languages, Systems
and Structures, Vol. 47, 2017, pp. 211-231.

Appendix A.

[62]

[63]

[64]

[65]

[72]

S.R. Chidamber and C.F. Kemerer, “A metrics
suite for object oriented design,” IEEE Trans-
actions on Software Engineering, Vol. 20, No. 6,
1994, pp. 476-493.

J. Bansiya and C.G. Davis, “A hierarchical
model for object-oriented design quality assess-
ment,” IEEE Transactions on Software Engi-
neering, Vol. 28, No. 1, 2002, pp. 4-17.

M. Lorenz and J. Kidd, Object-oriented software
metrics: A practical guide. Prentice-Hall, Inc.,
1994.

W. Li and S. Henry, “Object-oriented metrics
that predict maintainability,” Journal of Systems
and Software, Vol. 23, No. 2, 1993, pp. 111-122.
K. Gao, T.M. Khoshgoftaar, and A. Napolitano,
“Combining feature subset selection and data
sampling for coping with highly imbalanced soft-
ware data,” in Software Engineering Knowledge
Engineering Conference, 2015, pp. 439-444.

H. He and E.A. Garcia, “Learning from imbal-
anced data,” IEEFE Transactions on Knowledge
and Data Engineering, Vol. 21, No. 9, 2009, pp.
1263-1284.

C.G. Weng and J. Poon, “A new evaluation mea-
sure for imbalanced datasets,” in 7th Australian
Data Mining Conference. Australian Computer
Society, Inc., 2008, pp. 27-32.

M.A. De Almeida and S. Matwin, “Machine
learning method for software quality model build-
ing,” in International symposium on methodolo-
gies for intelligent systems. Springer, 1999, pp.
565-573.

R. Malhotra, Empirical research in software en-
gineering: Concepts, analysis and applications.
CRC Press, 2016.

W. Afzal and R. Torkar, “On the application
of genetic programming for software engineering
predictive modeling: A systematic review,” FEzx-
pert Systems with Applications, Vol. 38, No. 9,
2011, pp. 11984-11997.

J. Wen, S. Li, Z. Lin, Y. Hu, and C. Huang,
“Systematic literature review of machine learn-
ing based software development effort estimation
models,” Information and Software Technology,
Vol. 54, No. 1, 2012, pp. 41-59.

Table Al states the results of data extraction, i.e. the key parameters extracted from each primary
study. Table A2 states the datasets that have been used by at least two primary studies.

253

Software Change Prediction: A Systematic Review and Future Guidelines

Juey pausig

oA ‘xorr ‘mes3ip ‘“A3jor
‘pper ‘quredwoyor
‘roddewreae

‘9a1 ‘108eAorqH

SOLIJOW OZIS
), ‘SOLIOWI 9OUR)LISY UL
), ‘sotrjewr Suridnos
¥ ‘SOLIJOW UOISOY 0D

TOXODI A\ proj-uag, AoeInooy 0DV ‘C¥D ‘I9smoIg ueog ¥ souewt 00 % reumopr 110g 18d
NAg ‘sorrjeuwr
UOISSI8Y AOON ‘[v9] PP
VAONYV - 11 JO SSOUpPOOr) ordiyny osmmdo)g (suorsion €1) Xofr pue zualor ‘3D reuinor 010g 9Sd
Mar
Jo suoistaA § ‘tlop ‘sfury
Xor[‘mes3Ip ‘Ayjor SOLIJOW OZIS
‘rper ‘quredwoyo), ‘SOLIjoW 90URILIOYUL
‘roddewreaer), ‘sorrjowr Surpdnoo
Xopul-f ‘901, ‘198RA0Aq(H] ¥ ‘SoLIjoul UOISOYOD
- proj-uag, ‘AoeIndoy VO ‘C¥D ‘Iosmolrg ueayqg ¥ :soLew 00 78 rewmor 010g csd
serouopuadop
Areurq ‘sydeid
oney oxess 91y yida(g
9AIYRSON Os[eq ‘suorjenbs Jjo we)sAs DIN ‘ATON
‘oryey] eAmsoq Teaury ‘suorienbd ‘DdIN ‘dONIN ‘dON
- - os[e ‘AoeInodoy Jo woysAs reaur[-uoN AL ‘DOTIS DD ATV ‘AdIly Teumor 60z ¥Sd
11 JO SSeupooxr)
‘or1yey] aA1re3oN
as[eq ‘orpey asuey)) Jo ANIqeqoiq
9AINSOJ OsTeq ‘£109STY 0} poje[al sonjea
- — ‘Treody ‘Aoemooy g1 [ONf XolAr AM[Iqeqoid ‘INON MO [eumor 600z €Sd
ayel1
UOT}ROYISSR[OSTU
[[e10A0 (1esere VATA)
‘10119 JT odAT, do uoryeotiddy arem)jog SoINSROUL
- Mo-p[oy ‘10110 T odA], Poseq 991} UOISID(‘d5) poseq SMOPUIAN 9poO)) JO Saul] ¥ ‘IDON ‘JuoD €00g 2Sd
oyel
UOT}eOTJISSROSTU
[[e12A0 (10serep YANTA)
‘10110 T odAT, uoryeordde oaremi)jos soInseow
- 1no-ploy ‘10119 T odAT, dn ‘91 poseq SMopuipy - 9pod Jo SaUIT ¥ ‘TOON Juop 100 ISd
1593 potiow Somseot SUILIOB[e sjesee(] SI090TPaIg onuep Iedx 'ON S
[eo1IsTIRIS UOT)ePI[RA 9OURULIOJIO J SIsATeuy eje(’

sorpnys Arewtid jo srojourered Aoy Ty O[qR],

Ruchika Malhotra, Megha Khanna

254

MO SUO-0ABI]

(1se10q

991} UOISIO9(] IRSUI[-UON]

‘Bunjop Lrrolepy
‘urysoogq ‘Surddeq
‘Bururery ut 9sog)
S[OPOIN JO S[qUISSUT]
‘sweaw-y ‘JHD ‘LA

- “mo-poy DNV “Aoemdy WAS ‘AdY ‘dTIN ‘YT udn[JSSA ‘WIS MO [ewmor GI0g LISd
3594 100991 ‘dOd DOTS ‘DDL ‘0dD
uorprodord — UOISIAI] ‘[eddy do ‘s8nqpurq ‘qunosty ‘DON ‘DAY ‘LIA ‘TNON Juop ¥108 91Sd
- ploJ-ueL, DNV “Aoemooy ddan 391D ‘sueInuIlg DOTS D Juop y10¢ GISd
(suorsion §) oary
oypedy ‘(suolsioa §)
100loxd-sso1)) 10d oyoedy ‘(suorsioa
- ‘pPlog-uay, DNV ‘uospalg a1 ¥) epqy oyoedy DOTS D Juoy y10¢ ¥ISd
ONv xXogqumi(x0 SOLIjoW
- plog-usy, ‘Ayyroadg ‘reosy Dd ‘dTIN ‘A9 "1 ‘PUINOOL] ‘BYIULL] [9AS[-SSBID 19730 9T ‘3D [euInof ¢I0g €1Sd
yuey pouslig (suotszoa ¢1) wWISN[JSSA SOLIoUWI
TOXOOT A\ prog-uag, AoeImooy bl ‘(suorsion §) WIGIEdJ — paseq-uonmoay 91 ‘MO rewmor ¢10¢ ¢ISd
sisA[eue
Juel pouslg JIOMIQU [RIDOS WOJJ
TOXODT A\ ONVv snaanzy ‘sjposloxd SoInseow A[RIJUSD
‘wetpaLL] PIOA-US], ‘UOISIAI] ‘[edY N4 ‘dTIN ur-gnid osdipy 61 FI0M¥PN L S Juop gI0g 11Sd
OLIjot QOE@QOO
SWe)SAG 9)eUISqIH o8es() eoejIoU]
juey poullg NV Z pue sjoofoad ‘sorrjowr Ayrxorduroo y1odoy
TWOXOOTI AN PIOA-UST, ‘UOISIDI] ‘[eddY dTIN ‘TNAS ‘AN u-gnid osdrppyy 8 ¢ ‘sormewr ofesn ¢ ‘3[D [eOIUYRL, 1105 01Sd
SOLIOWI 9ZIS
), ‘SOLIjoW ©oURLIOYUI
LT ‘sorrgowr 3urpdnoo
SISATeue-elowW (g ‘SOLIoW UOISAY 0D
- - onv 309j0 wopuey SweysAg eaRl g0T 81 oMW OO g9 [eWInor 110 6Sd
o1)RI 950)) ‘180)) (suorsioa §) reyealr
aguey) ‘([eo9y) WSTURYISN ‘(SUOISIOA F) 1010919pD()
- - oney-1H JSIT yuey peulquio)) ‘(suotston ¢) 1rex dOOND 3D Juop 1106 8Sd
1591 porott somseont mgﬂﬁhomﬁﬁ syesele(J SIOYOIPald INUdA Ieo ON S
reonsiels uorepIfeA 9OURULIONISJ stsATeue eye(J)

255

Software Change Prediction: A Systematic Review and Future Guidelines

109fo1d-ssor)) onv HONN ‘87 ‘Nd ‘AN 9yms [Surpnpout
15997 ‘Ploj-ue], ‘fyogwadg ‘qreosy ‘dTIN ‘D ‘dV ‘AY ‘YT A€ PWOHIIMS ‘TOV soMpew OO €1 [RWmOf L10¢ ¥ESd
(18010 9017, UOISIO(
IeoulTT-UON ‘SUI)OA
Ayaolepy ‘Surured],
duanseauwr-J ur 9seg) senbruyoa],
yuey poudlg joofoxd-ssor) ‘[[RO9Y ‘UOISIOOIJ Jo se[quosuy ‘Y
TOXOD[I AN ‘pIoj-us], ‘Aoemooy ‘1A ‘A9 dTIN 9T sur-gnd asdipg 01 somPw OO 19 [ewmof L10% €8Sd
(spPuwy 4gY
oImseoul- puUR [RIWOUA[O] ‘IeaulT) (suorsion soLIew 30 Surpnpout
1599-7 PIOJ-AjuemT, ‘AoeInooy INAS orenbg gseer] G) seo1aIeg Aeqr] soew OO 18 Juo) L10% 2eSd
(8uryop
Aytolepy ‘Surured],
ur yseq]) senbruyoa],
Jo sejquuesuy
‘(spouaey prowsig
pue [erwouL[og ‘Iesurr) SOLIJOW OZIS
INAS ‘(sppuiey 49y), ‘SOLIjOW 9dURILID UL
pue [erwouA[oq ‘Iesurr) LT ‘sorrjowr 3urpdnoo
SUIULIRST SUIYIRIA] 61 ‘SOLIlOW UOISIY 0D
- PloJ-uaT, DNV “4Loemooy WXy ‘gN ‘T osdroy 6T :SOLPW OO g9 Juop L10¢ 1eSd
aInsesur- |
ooy ‘uorsald SOTI)OWL
- Mo-ploH ‘DAY Aorinooy HAWD (Suoisioa ¢T) WSN[JSSA Paseq-uonn[oaf 91 3D [Rwmof L10¢ 08Sd
HAVTIS
‘dS-SdD ‘dD-SIAD
‘VAT-0Sd ‘dANN
“YHAIH ‘dTIN-SID
suey pausig uesw-) ‘dT1-sdD ‘dV-SdD ey
TOXOOTI A ploJ-uaT, ‘Aoemooy ‘av ‘dT ‘Nd ‘dN oyoedy ‘saey opedy DOTS IO Tewmor L10%7 61Sd
aanseawr-y)
‘ormseau- g JANN ‘dS-SdD
‘[reoay “Ayoyroadg ‘SONS ‘SOTIIN
199(01d-ssor) ‘uorsIaI g “9ddrd ‘o0sdd ®IISI[RD VON ‘IWIN ‘INdN
URWIPALL] ‘Ploj-ue], DAV ‘Aoemdoy gy ‘dTIN ‘DF ‘AY ‘YT 89D ‘suwennug ‘AIN ‘TNON ‘DOTIS D Juoy G10¢ 8ISd
1593 potiot SOISEIw sug3LIos[e s1eseIRe(] SI0901peIq onuoAp IROX ON S
[eonsnelq uorepIfeA 9OURUWLIONID J stsATeue eye(J)

Ruchika Malhotra, Megha Khanna

256

ey pousig

eYOA\ ‘ousonT

“qrunr ‘Sunf poigr
‘e[‘ydernr
‘9reuIoqIy ‘PUIINO9I]
‘1opeeI ‘sneanzy

uoxooipy 909foad-ssoxn onv Nd “TINNO8IY ‘apuy ‘uy 3D Juop 810¢ 1€Sd
Sururear] LD (yoeo suorsion ¥)
9INSBIN - | doea(q ‘orqe], uoIsSI9(] eYOA\ ‘Sunp ‘I01RIN[
- 909foad-ssory ‘uoIsIORI] ‘[e0sy ‘NAS ‘1d ‘N AT ‘1009934 “TINNOSTY DOTS 1D Juop 810¢ 0€Sd
°zn7y
‘uorderag ‘I1033epoy
‘1oyersuel] jpd
‘sweagd ‘TTAL
‘MRI(TIOH[‘4RI soLew OO
S[epowt “UPH[‘PUINO9L] ‘SOLIjOWL PIse(-OIN[0AD
1897 pue ureI} ‘sounge ‘TNN031y ‘siodo(easp Jo Burieljess
0} MOpUIM 9100G I9LIg ‘$90I0Y ‘ueRyY OIJUBWISS PUE [RINIONIIS
BID SuIprys ODIN ‘DNV ‘Ao ‘esdeudg ‘104 ‘s1edo[eAsp JO Iequnu
‘AOUTY A —UURIA uowr ¢ ‘UOISIdRIg ‘[[RO9Y M1 ‘euednr ‘elpuesse)) ‘Juy ‘soduerp jo Adoxqury ewmor Q10Z2 62Sd
snyedor|
smsesw-q ‘DOV Nd ‘D4 ‘Tdvd “RYRIN[OY ‘[0 9ms 3D Jurpnpout
URTIPILL] ploj-uey, ‘Ayoypadg qreoey ISy ‘AY ‘YT 'ITIN ‘reymsxny, ‘GILVO sorew OO ¢T @dey) 8T0¢ 8¢S
RO
‘ouoont ‘yrunp ‘sunp
Spoysr ‘rejewur ‘ydeidp
199load-sso1)) +INVTO ‘9)eUIDqIH ‘PUTTIOdI] TAZIS ‘[g9] A1uof pue
Auowt ‘y00foad oInseow- TINVID ‘sueawu-y ‘102921 ‘sneinzy] ‘eqns [surpnpout
-ON ‘URWPALL] uAy - DAV Aoemdoy INAS A9y ‘dTIN ‘9T Tumo3ry “Ipuy quy somPw OO 0T [ewmop L10¢ LgSd
INGD ‘DI ‘DINV
‘€INODT ‘DA DV
uey pousig ueouI-p) ‘eoue[eq [(pSo7 ‘01 "IN ‘o3ms AOOIND DOTS
TOXOD[IAA UOTSIOA-IOJUT ‘DNV ‘Aoeinooy nq ‘so8esoed uoryeoridde ‘oms 3D Surpnpour
‘wewpoli] ‘PlOJURL, ‘woIsLeId Teosy ‘g 'dV ‘AN ‘JY dTIN ploipuy ooy, somjew OO 81 [BWmOr L10Z 92Sd
INAS ‘SOX
‘VD-LA ‘'VAT ‘SOTdIN INED DI DNV
DO-dTIN “YddIH ‘€INODT ‘DA DV
quey pousig TAV-VD ‘§¥D ‘0SdD ‘o3ms OO ‘DOTS
UOXOO[IAA ueaw-r) ‘eoue[Ryg ‘SONS ‘TUVD ‘9T1-SdD sogeyoed ‘ons 3D surpnpour
‘wewpall] P[oj-ua, ‘dd ‘Tresed ‘dINN ‘VAT-0Sd uonedrdde proipuy Xig soljew OO 81 [ewmor L10z $eSd
1593 poIow Sotseot SUILIOB[e sjoseIR(] SI090TpPaI g onuep Iedf 'ON S
[eonsIyelq UOT)ePI[RA QOURULIOLIDJ SIsATeue eje([’

257

Software Change Prediction: A Systematic Review and Future Guidelines

(18010 9017, UOISIO(]
IeoulT-UON ‘SUI)OA
Ayaolepy ‘Surured],

ur 9seg) senbruyoa],
JO so[quuosuny
‘swyI03[e ururer)

G 1M IOMIDU [RINSON
‘onystsorT ordurtg (A9Y
‘reruouf[o ‘reaur)
INAS orenbg-jsesr]
‘(Jgy ‘Terwoui[oq

‘Teoul) TN OUWIIXG]
‘(Agy ‘rerwoukioq
‘resurT) INAS ‘LA

1pl ‘m ‘opd ‘mresy ‘ams

oyms

juey pouldlg oInseow-, ‘UOISS9I80Y [IWOUA[O] ‘o100 ‘oyepdn ‘8nqep soLjewr 310 Jurpnpour
UOXOO[IAA PIoJ-0ATq ‘AoeInooy ‘UO0ISSRIZY Iedul] ‘YT ‘aepgom ‘oredurod sotewr OO 0% ‘JuoD) 6I0¢ LeSd
HPHL
Surjop ‘sedloy ‘ur[eyY ‘A}IOO[OA S1010%] pajelal
hiite} OO ‘d¥ “Dd ‘dV ‘dTIN ‘N ‘esdeudg ‘T0d ‘suedaqd Tdorad(‘sorjet
£130U3[—11008 ploj-usl, ‘DOV ‘eanseswr-g ‘o19s1307 orduirg ‘Y1 ‘oweon ‘[F8o ‘quy §S9001J ‘sorgewt OO reumor 610¢ 9¢Sd
OO 1eOWO], ‘SIS ‘OUadN T SOLIPOIN
‘ONV ‘eanseowi- | ‘AeIoyr ‘Jpdixed] IOMPON ‘SOLIJOW PIOAN
130U3-19008 PIOJ-UuRY, ‘WOISAIJ ‘T[R9 INAS ‘dN ‘67D ‘npar ‘esdipy ‘yuy ‘sotgown £yrxerdwioyy [ewinor 810¢ GESd
juey poullg So[qUISSUS SSoU)Y [p30T ‘yreN
UOXOO[IAA paseq 3unjoa OSJD “9N ‘O] ‘soSeoed
‘uRTIpPaLL] ploj-uy, WedN-D ‘eourreqg ¥ 'd71'dv ‘Dd ‘A4 uorjeordde prorpuy xig DOTS 31D Tewmor 8107 F€Sd
jyuey pouSig (suorsioa §) ghiofen
TOXOOI A\ a1 ‘g ploipuy ‘(suolsioa G) SOLIjou
‘uRTIpaLL] ploj-ue, DNV “Aoemdy gy ‘A4 ‘N ‘dTIN ‘YT $10RIUO)) PIOIPUY PIsRq-UOTINOAT 9T DD [euIor 8107 €€Sd
NNVD
quey pousig ‘dANN ‘dV-SdD Anmqessug
TOXODTIA 'dS-SdD ‘dT-SdD ‘Dd DV TN ‘dHD
‘UeWpaLL] P[oj-ua, Aoemooy ‘dD-SAD VAT YT (suoisioa) yeydedrir ‘GHD ‘AHD “THD ‘DOL Juod 810z ¢eSd
1593 POTIow SoSeot SUILIOB[e sjesee(] SI090TpPaIg onuop IedX ON §
[eonsIyelq UOT)ePI[RA 9OURULIOIO J SIsATeue eje([’

Ruchika Malhotra, Megha Khanna

258

‘US1s9(] PoULLI)-199[q () 10] [PPOIN ANTen() :qOOIND ‘Xopu] AN[iqeurejure]y [N S8ng
proIsTel AlyRMWUIN)) (HD HOPH Ped)s[el 2Alpe[nUN) (HHD POUWN[OA PedIS[RH 2AIpR[NWIN)) :AHD {[ISuarT peajs[el] aAne[nwN) THD (A)xo[duIo)) o1pemo[dA))
®10L, DD I, ‘uoroun, siseq [eipey :IgY ‘SPOYIRIN 21qnd Jo Ioqumny NN ‘Siojewrered JO Ioquuny :JON ‘sse[) Iod sporio]y Jo Joquny :JNON ‘S0Inquiyy
Jo Iequuny YON {So[qeLrep 820 JO Ioquny ATON {perdadsuf sem o[l 92In0g sowl], Jo IoquunyN [DON SO[qeLIRA 99UR)SU] JO IoquuInN :AIN ‘SPOYIOIN 9our)suf
Jo equmy] (NN ‘sesse[) pojrodwy jo qumy :DIN ‘8urpdno)) Suissed 93esso]N :DJIN ‘USISo PoIusLI)-199[q() I10J SOOI :QOOIN ‘SoypurRig JO IoqUINN WNUWIXRI
ONIA HULIdIPe0) UOIjR[aIIO)) SMAIRIN DDA (8uridno)) souejrroyu]) 8urdno)) juaIopyy)7 ‘UOI}09[9s 90URISU] PUL UOIIDA[AS JLIAA Sure[qer] SuLieisni))
JINVTD Axerdwro)) o1ewoRA)) 1)) 90USISJuOo)) "JUo)) ‘SSB[) ® JO SPOYISN Usomiag Surdno)) :Ng) :juemwaanses]y Aouspuado(] [erotaeyoq N SSOUIL]
wnwiyd() Jo uorpoe[eg aandepy :JOSV ‘A)xe[dwio)) POYIeIN 98RILAY DNV ‘BIR(] [RI0] JO sS900y (IIV ‘eje(Pojrodw] jo sse00y (I -surdno)) jusispy OV

"Apnjs oY} Ul PUNOJ J0U SeM UOIPeuLIoful SUIrpuodsaliod a1 $9edIpul ,—, 90N

TOYISSe[) JOSV
‘SO[UIOSUD SSOUYY

Iodeoyjo0y,

‘oruogaqng ‘XrueoyJ
‘uoARIA ‘O0(J[eo130T
NP 0N

Jouqer ‘dd TOSPdAY

BIO DO peseq 3uroa OSdD ‘ewey ‘eion) ‘qdeirn
‘330U 3[—4100G ploj-uel, ‘DAV ‘eansesw- § ‘g1 ‘AH ‘DG ‘dV ‘U1 “eae(I(NI ‘TOV DOTIS 3D Tewmof 610 8€Sd
591 UOJQ@E Soamstatt mgﬂﬁhowﬂm mpwmdudm mpOuomﬁw.ﬁnﬁ w5Q®> Hd®> .OZ m
[es13s1yesg uoryepIfeA 9OURUWLIONID J stsATeue eye(J

Software Change Prediction: A Systematic Review and Future Guidelines 259

Table A2. Commonly used datasets

Dataset Name Study Numbers

Android Bluetooth PS27, PS26, PS34

Android Calendar PS27, PS26, PS34

Android Contacts PS26, PS33, PS34

Android Gallery PS26, PS33, PS34

Android MMS PS27, PS26, PS34

Android Telephony PS26, PS34

Ant PS27, PS29, PS31, PS35, PS36
Antlr PS27, PS31

AOI PS24, PS38

ArgoUML PS16, PS27, PS29, PS30, PS31
Azureus PS11, PS27, PS31

Bean Browser PS5, PS7

Eclipse PS10, PS11, PS21, PS23, PS35
Free PS5, PS7

FreeCol PS16, PS27, PS28, PS30, PS31
FreeMind PS13, PS27, PS29, PS31
Glest PS15, PS18

Hibernate PS10, PS27, PS31

10 PS27, PS34

JChempaint PS5, PS7

JEdit PS5, PS29, PS35, PS36, PS38
Jetty PS5, PS7

JFlex PS3, PS4

JFreeChart PS8, PS29, PS32

JGraph PS27, PS31

Jigsaw PS5, PS7

Jlex PS5, PS7

JavaMapper PS5, PS7

JMeter PS30, PS31, PS38

Jung PS30, PS31

Logdi PS27, PS34, PS36

Lucene PS29, PS31, PS35, PS36
Math PS19, PS34

Net PS27, PS34

PeerSim PS12, PS17

POI PS14, PS29, PS36

Synapse PS29, PS36

Velocity PS29, PS36

Voji PS5, PS7

VSSPlugin PS12, PS17, PS20

Weka, PS30, PS31

Windows based software application (VLWA) PS1, PS2
Xalan PS29, PS36

	Introduction
	Importance of SCP
	Review procedure
	Protocol for conducting the review
	Search strategy
	Inclusion and omittance criteria
	Quality criteria
	Data extraction

	Review results
	Predictors used for SCP (RQ1)
	Experimental settings for SCP (RQ2)
	Feature selection and dimensionality reduction techniques (RQ2.1)
	Dataset characteristics (RQ2.2)
	Validation methods (RQ2.3)
	Performance measures (RQ2.4)

	Data analysis algorithms used for SCP (RQ3)
	Popular category of data analysis algorithms (RQ3.1)
	ML algorithms used for SCP (RQ3.2)

	Predictive performance of ML algorithms for SCP (RQ4)
	Predictive capability of ML algorithms
	Comparative performance of ML algorithms

	Statistical tests used by SCP studies (RQ5)
	Threats to validity in SCP studies (RQ6)
	Categories of threats (RQ6.1)
	Mitigation of threats (RQ6.2)

	Threats to validity
	Conclusions and future guidelines
	References

	

