PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Creating the Structure and Properties of 7075 Alloy Casts by Thermal and Forming Processes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the hot formability of 7075 aluminum alloy sand and permanent casting ingots were verified. The experiment was carried out by using casting, heat treatment (homogenization) of ingots and conducting isothermal compression tests at temperatures of 420-500°C. The effect of the forming temperature on the microstructure, the tendency for crack formation and hardness were determined. The results show that ingots in the as-cast state have a dendritic network structure rich in the second phase precipitation on the grain boundaries. After the homogenization process, the microstructure is significantly more balanced. The forming process at 420-480°C of sand casts leads to significant grain elongation and crack formation, mainly at the grain boundaries. Raising the forming temperature to 480-500°C leads to a reduction in the occurrence of cracks. On the other hand, permanent mold castings do not reveal cracks during deformation in the temperature range 420-480°C.
Twórcy
  • Lublin University of Technology, Faculty of Mechanical Engineering, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • Lublin University of Technology, Faculty of Mechanical Engineering, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • Lublin University of Technology, Faculty of Mechanical Engineering, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • AGH University of Science and Technology in Cracow, Faculty of Foundry Engineering, ul. Reymonta 23, Building # D8, 30-059 Cracow, Poland
  • ZOP Co. Ltd Forging Plant, ul. Kuźnicza 13, 21-045 Świdnik, Poland
Bibliografia
  • 1. Davis, J.R.: ASM Specialty Handbook: Aluminum and Aluminum Alloys. (1993).
  • 2. G.W. Kuhlman: Forging of aluminum alloys. ASM Handbook, Vol. 14A Metalwork. Bulk Form. (2005). https://doi.org/10.1361/asmhba0003996.
  • 3. George, E.T., MacKenzie, D.S.: Handbook of Aluminum: Volume 2: Alloy Production and Materials Manufacturing, (2003).
  • 4. Guo, L. et al.: Processing map of as-cast 7075 aluminum alloy for hot working. Chinese J. Aeronaut. (2015). https://doi.org/10.1016/j.cja.2015.08.002.
  • 5. Kim, H.. et al.: A study of the manufacturing of tie-rod ends with casting/forging process. J. Mater. Process. Technol. 125–126, 471–476 (2002). https://doi.org/10.1016/S0924-0136(02)00323-0.
  • 6. Kwak, Z. et al.: Microstructure of selected 7xxx series aluminum alloys obtained by semi-continuous casting. Pr. Inst. Odlew. 56, (2016).
  • 7. Moćko, W., Kowalewski, Z.L.: Dynamic properties of aluminium alloys used in automotive industry. J. KONES. 19, 345–351 (2012).
  • 8. Mondolfo, L.F.: Aluminum alloys: structure and properties. Elsevier (2013).
  • 9. Naser, T.S. Ben, Krallics, G.: Mechanical behavior of multiple-forged Al 7075 aluminum alloy. Acta Polytech. Hungarica. 11, 7, 103–117 (2014).
  • 10. Płonka, B. et al.: Application of Al alloys, in the form of cast billet, as stock material for the die forging in automotive industry. Arch. Civ. Mech. Eng. (2008). https://doi.org/10.1016/S1644-9665(12)60201-5.
  • 11. Polak, S. et al.: Warm forming of 7075 aluminum alloys. Procedia Eng. 207, 2399–2404 (2017).
  • 12. Porter, D.A. et al.: Phase Transformations in Metals and Alloys, (Revised Reprint). CRC press (2009).
  • 13. Robinson, J.S. et al.: The influence of quench sensitivity on residual stresses in the aluminium alloys 7010 and 7075. Mater. Charact. (2012). https://doi. org/10.1016/j.matchar.2012.01.005.
  • 14. Segal, V.M.: New hot thermo-mechanical processing of heat treatable aluminum alloys. J. Mater. Process. Technol. 231, 50–57 (2016). https://doi. org/10.1016/J.JMATPROTEC.2015.12.009.
  • 15. Starke, E.A., Staley, J.T.: Application of modern aluminum alloys to aircraft. Prog. Aerosp. Sci. 32, 2–3, 131–172 (1996). https://doi. org/10.1016/0376-0421(95)00004-6.
  • 16. Totten, G.E., MacKenzie, D.S.: Handbook of Aluminum: Vol. 1: Physical Metallurgy and Processes. CRC press (2003).
  • 17. Wang, H. et al.: Warm forming behavior of high strength aluminum alloy AA7075. Trans. Nonferrous Met. Soc. China (English Ed. (2012). https:// doi.org/10.1016/S1003-6326(11)61131-X.
  • 18. Winiarski, G. et al.: The influence of tool geometry on the course of flanges radial extrusion in hollow parts. Arch. Civ. Mech. Eng.17, 4, 986-996 (2017). https://doi.org/10.1016/j.acme.2017.04.002.
  • 19. Xiao, W.-C. et al.: Deep drawing of aluminum alloy 7075 using hot stamping. Rare Met. 36, 6, 485–493 (2017). https://doi.org/10.1007/s12598-017-0919-4.
  • 20. Zhou, H.T. et al.: A study of automobile brake bracket formed by casting-forging integrated forming technology. Mater. Des. (2015). https://doi. org/10.1016/j.matdes.2014.11.046.
  • 21. Zhou, H.T. et al.: A study of automobile brake bracket formed by casting–forging integrated forming technology. Mater. Des. 67, 285–292 (2015). https://doi.org/10.1016/J.MATDES.2014.11.046.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-221aa8f2-ee07-4dc0-b394-dffd36dbe66a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.