PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mathematical modelling of marine power plants with thermochemical fuel treatment

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article considers the methodological aspects of the theoretical investigation of marine power plants with thermochemical fuel treatment. The results of the study of the complex influence of temperature, pressure, and the ratio of steam / base fuel on the thermochemical treatment efficiency are presented. The adequacy of the obtained regression dependences was confirmed by the physical modelling of thermochemical fuel treatment processes. For a gas turbine power complex with a thermochemical fuel treatment system, the characteristics of the power equipment were determined separately with further merging of the obtained results and a combination of material and energy flow models. Algorithms, which provide settings for the mathematical models of structural and functional blocks, the optimisation of thermochemical energy transformations, and verification of developed models according to the indicators of existing gas turbine engines, were created. The influence of mechanical energy consumption during the organisation of thermochemical processing of fuel on the efficiency of thermochemical recuperation is analysed.
Rocznik
Tom
Strony
99--108
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Admiral Makarov National University of Shipbuilding Nikolaev Ukraine
  • Admiral Makarov National University of Shipbuilding Nikolaev Ukraine
  • Admiral Makarov National University of Shipbuilding Nikolaev Ukraine
  • Gdansk University of Technology Poland
autor
  • Jiangsu University of Science and Technologym China
Bibliografia
  • 1. Lloyd’s Register, QinetiQ and University of Strathclyde, ‘Global Marine Technology Trends 2030’, 2015. [Online]. Available: https://www.lr.org/en/insights/global-marine-trends-2030/ global-marine-technology-trends-2030/.
  • 2. UNCTAD, ‘Review of Maritime Transport 2021: UNCTAD/ RMT/2021’, 2021. [Online]. Available: https://unctad.org/ system/files/official-document/rmt2021_en_0.pdf.
  • 3. W. Han, H. Jin, N. Zhang, and X. Zhang, ‘Cascade Utilisation of Chemical Energy of Natural Gas in an Improved CRGT Cycle,’ Energy, vol. 32, pp. 306–313, 2007. DOI: 10.1016/j. energy.2006.06.014.
  • 4. N. Zhang and N. Lior, ‘Use of Low/Mid-Temperature Solar Heat for Thermochemical Upgrading of Energy, Part I: Application to a Novel Chemically-Recuperated Gas-Turbine Power Generation (SOLRGT) System,’ J. Eng. Gas Turbines Power, 134(7): 072301, 2012. DOI: 10.1115/1.4006083.
  • 5. R. Carapellucci and L. Giordano, ‘Upgrading Existing Gas-Steam Combined Cycle Power Plants Through Steam Injection and Methane Steam Reforming,’ Energy, vol. 173, 229–243, 2019. DOI: 10.1016/j.energy.2019.02.046.
  • 6. L. Tartakovsky and M. Sheintuch, ‘Fuel reforming in internal combustion engines,’ Progress in Energy and Combustion Science, vol. 67, pp. 88-114, 2018. DOI 10.1016/j. pecs.2018.02.003 .
  • 7. O. Cherednichenko and S. Serbin, ‘Analysis of efficiency of the ship propulsion system with thermochemical recuperation of waste heat’, J. Marine. Sci. Appl., vol. 17, pp. 122–130, 2018. DOI: 10.1007/s11804-018-0012-x .
  • 8. O. Cherednichenko, S. Serbin, and M. Dzida, ‘Investigation of the combustion processes in the gas turbine module of an FPSO operating on associated gas conversion products,’ Polish Maritime Research, vol. 4, pp. 149–156, 2019. DOI: 10.2478/pomr-2019-0077.
  • 9. O. Cherednichenko, S. Serbin, and M. Dzida, ‘Application of Thermo-chemical Technologies for Conversion of Associated Gas in Diesel-Gas Turbine Installations for Oil and Gas Floating Units,’ Polish Maritime, vol. 26(3), pp. 181-187, 2019. DOI: 10.2478/pomr-2019-0059.
  • 10. H. Gaspar, A. Ross, D. Rhodes, and S. Erikstad, ‘Handling Complexity Aspects in Conceptual Ship Design,’ Int’l Maritime Design Conf., Glasgow, 2012. [Online]. Available: https://www.semanticscholar.org/paper/Handling-aspects-of-complexity-in-conceptual-ship-Gaspar/1febc36a217217 fb7acff86d609d71983536816a#related-papers.
  • 11. J. Caballero, M. Navarro, R. Femenia, and I. Grossmann, ‘Integration of different models in the design of chemical processes: Application to the design of a power plant,’ Applied Energy, vol. 124, pp. 256–273, 2014. DOI: 10.1016/j. apenergy.2014.03.018.
  • 12. J. Haydary, Chemical Process Design and Simulation: Aspen Plus and Aspen Hysys Applications. Bratislava : John Wiley & Sons, 2018. 448 р.
  • 13. K.I.M. Al-Malah, Aspen Plus: Chemical Engineering Applications. Hoboken; New Jersey, John Wiley & Sons Inc, 2016. 656 p.
  • 14. C.-J. Kat and P.S. Els, ‘Validation metric based on relative error,’ Mathematical and Computer Modelling of Dynamical Systems: Methods, Tools and Applications in Engineering and Related Sciences, vol. 18 (5), pp. 487 – 520, 2012. DOI: https://www.tandfonline.com/doi/full/10.1080/13873954. 2012.663392.
  • 15. L. Brillouin, Science and Information Theory. 2nd edn. Dover Books on Physics, Courier Corporation, 2013. Available at: https://www.perlego.com/book/112582/ science-and-information-theory-second-edition-pdf.
  • 16. B. Menin, ‘Information Measure Approach for Calculating Model Uncertainty of Physical Phenomena,’ American Journal of Computational and Applied Mathematics, vol. 7(1), pp. 11-24, 2017. DOI: 10.5923/j.ajcam.20170701.02.
  • 17. I.B. Matveev, S.I. Serbin, ‘Theoretical and experimental investigations of the plasma-assisted combustion and reformation system,’ IEEE Transactions on Plasma Science, vol. 38(12 Part 1), pp. 3306–3312, 2010. DOI: 10.1109/ TPS.2010.2063713.
  • 18. S.I. Serbin, I.B. Matveev, and G.B. Mostipanenko, ‘Plasma-Assisted Reforming of Natural Gas for GTL: Part II - Modelling of the Methane-Oxygen Reformer,’ IEEE Transactions on Plasma Science, vol. 43(12), pp. 3964–3968, 2015. DOI: 10.1109/TPS.2015.2438174.
  • 19. O. Cherednichenko, M. Tkach and S. Dotsenko, ‘Experimental Study of Processes in the Elements of Thermochemical Fuel Treatment Systems of Integrated Power Generating Units,’ 2021 IEEE International Conference on Modern Electrical and Energy Systems (MEES), pp. 1 - 4, 2021. DOI: 10.1109/ MEES52427.2021.9598783.
  • 20. V.M. Verbuck, and D.I. Milman, ‘Veckstein’s method as a modification of the transversal method,’ USSR Computational Mathematics and Mathematical Physics, vol. 17(2), pp. 215–216, 2017.
  • 21. F.J. Durán, F. Dorado, and I. Sanchez-Silva, ‘Exergetic and Economic Improvement for a Steam Methane-Reforming Industrial Plant: Simulation Tool,’ Energies vol. 13, pp. 3807, 2020. https://doi.org/10.3390/en13153807.
  • 22. S. Serbin, A. Mostipanenko, and I. Matveev, ‘Investigation of the Working Processes in a Gas Turbine Combustor with Steam Injection,’ Proceedings of the ASME/JSME 8th Thermal Engineering Joint Conference, AJTEC2011- 44042, T20012, pp.1-6, 2011. DOI: https://doi.org/10.1115/ AJTEC2011-44042.
  • 23. S. Serbin and K. Burunsuz, ‘Numerical study of the parameters of a gas turbine combustion chamber with steam injection operating on distillate fuel,’ International Journal of Turbo and Jet Engines. Published online by De Gruyter, September 17, 2020. DOI: https://doi.org/10.1515/tjeng-2020-0029.
  • 24. H.K. Kayadelen and U. Yasin, ‘Thermoenvironomic evaluation of simple, intercooled, STIG, and ISTIG cycles,’ International Journal of Energy Research, vol. 42.12, pp. 3780-3802, 2018. DOI: https://doi.org/10.1002/er.4101.
  • 25. Wärtsilä Water & Waste, www.wartsila.com, 2019. [Online]. Available: https://www.wartsila.com/marine/build/ fresh-water-generation/wartsila-reverse-osmosis.
  • 26. G.F. Romanovsky, N.V. Washchilenko, and S.I. Serbin, ‘Theoretical basis for the design of marine gas turbine units,’ Mikolayiv: USMTU, 304 p., 2003 (in Ukraine).
  • 27. F. Pan, H. Zheng, Q. Liu, and R. Yang, ‘Design and performance calculations of chemically recuperated gas turbine on ship,’ Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol. 227(8), pp. 908–918, 2013. DOI: 10.1177/0957650913498081.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-221393d3-039b-429d-8fe3-cbefd167b1cf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.