PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Methodological study on single grain OSL dating of mortars: Comparison of five reference archaeological sites

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper focuses on single grain OSL dating of quartz extracted from known age archaeological mortars, potentially representing a new tool for dating the construction of historical buildings. Apart from SG-OSL measurements and annual dose rate determination, the samples are systematically studied by means of optical microscopy, EDX-SEM cartography and beta autoradiography in order to evaluate the possible microdosimetric heterogeneity of each sample, arising principally from local variations of potassium content. Besides the practical aspects concerning sampling, preparation and appropriate choice of measurement conditions, the paper aims at the differences in microstructure and in elementary composition between different mortars and attempts to evaluate the impact of these aspects on the dispersion of equivalent dose distributions. Finally, archaeological doses (paleodoses) are calculated by using central age model (CAM), minimum age model (MAM) and internal-external consistency criterion (IEU). The appropriateness of these models for the exploitation of the measured SG-OSL data as well as for a hypothesis on the estimation of the input parameter needed to run these models are discussed. Three categories of mortars were identified: samples without any exploitable SG-OSL signal, samples that could have been reliably dated and poorly bleached samples affected by microdosimetric variations whose dating still remains complicated. Finally, the hypothesis on distinguishing between reliable and questionable dating results is raised and the potentials of the method for dating mortars are pointed out.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Strony
77--97
Opis fizyczny
Bibliogr. 60 poz., rys.
Twórcy
autor
  • IRAMAT-CRP2A, "Institut de Recherche sur les ArchéoMATériaux - Centre de Recherche en Physique Appliquée à l’Archéologie", UMR5060 CNRS-Université de Bordeaux-Montaigne, Maison de l’Archéologie, Esplanade des Antilles, 33607 Pessac cedex, France
autor
  • IRAMAT-CRP2A, "Institut de Recherche sur les ArchéoMATériaux - Centre de Recherche en Physique Appliquée à l’Archéologie", UMR5060 CNRS-Université de Bordeaux-Montaigne, Maison de l’Archéologie, Esplanade des Antilles, 33607 Pessac cedex, France
Bibliografia
  • 1. Arnold LJ, Roberts R, Galbraith R and DeLong RF, 2009. A revised burial dose estimation procedure for optical dating of young and modern-age sediments. Quaternary Geochronology 4: 306–325, DOI 10.1016/j.quageo.2009.02.017.
  • 2. Arnold LJ, Demuro M and Navazo Ruiz M, 2012. Empirical insights into multi-grain averaging effects from ‘pseudo’ single-grain OSL measurements. Radiation Measurements 47: 652–658, DOI 10.1016/j.radmeas.2012.02.005.
  • 3. Blain S, Guibert P, Bouvier A, Vieillevigne E, Bechtel F, Sapin C and Baylé M, 2007. TL-dating applied to building archaeology: The case of the medieval church Notre-Dame-sous-Terre (Mont-SaintMichel, France). Radiation Measurements 42: 1483–1491, DOI 10.1016/j.radmeas.2007.07.015.
  • 4. Bøtter-Jensen L, Solongo S, Murray AS, Banerjee D and Jungner H, 2000. Using OSL single-aliquot regenerative-dose protocol with quartz extracted from building materials in retrospective dosimetry. Radiation Measurements 32(5–6): 841–845, DOI 10.1016/S1350-4487(99)00278-4.
  • 5. Brennan BJ, Lyons RG and Phillips SW, 1991. Attenuation of alpha particle track dose for spherical grains. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements 18: 249–253, DOI 10.1016/1359-0189(91)90119-3.
  • 6. Bulur E, Duller GAT, Solongo S, Bøtter-Jensen L and Murray A, 2001. LM-OSL from single grains of quartz: a preliminary study. Radiation Measurements 35: 79–85, DOI 10.1016/S1350- 4487(01)00256-6.
  • 7. Christophe C, Philippe A, Guérin G, Mercier N and Guibert P, submitted. A Bayesian model for the OSL dating of poorly bleached sediment samples. Radiation measurements.
  • 8. Choi JH, Murray AS, Cheong CS and Hong SC, 2009. The dependence of dose recovery experiments on the bleaching of natural quartz OSL using different light sources. Radiation Measurements 44: 600–605, DOI 10.1016/j.radmeas.2009.02.018.
  • 9. Fisher A, 2008. Archäologie in Basel. (Archaeology in Basel). Unter uns, 255, Basel, p. 255. (in French).
  • 10. Galbraith RF, Roberts RG, Laslett GM, Yoshida H and Olley JM, 1999. Optical dating of single and multiple grains of quartz from Jinmium Rock Shelter, Northern Australia: part I, experimental design and statistical models. Archaeometry 41(2): 339–364, DOI 10.1111/j.1475-4754.1999.tb00987.x.
  • 11. Grainger S, 2009. Development of techniques for high-resolution spatially resolved elemental analysis in materials of interest in luminescence dating. Master thesis, Durham university, Great Britain.
  • 12. Goedicke C, 2011. Dating mortar by optically stimulated luminescence: a feasibility study. Geochronometria 38(1): 42–49, DOI 10.2478/s13386-011-0002-0.
  • 13. Goedicke C, 2003. Dating historical calcite mortar by blue OSL: results from known age samples. Radiation Measurements 37: 409–415, DOI 10.1016/S1350-4487(03)00010-6.
  • 14. Gueli AM, Stella G, Troja SO, Burrafato G, Fontana D, Ristuccia GM and Zuccarello AR, 2010. Historical buildings: Luminescence dating of fine grains from bricks and mortar. Il Nuovo cimento 125B, DOI 10.1393/ncb/i2010-10892-4.
  • 15. Götze J, Plötze M and Habermann D, 2001. Origin, spectral characteristics and practical applications of the cathodoluminescnece (CL) of quartz - a review. Mineralogy & Petrology 71: 225–250, DOI 10.1007/s007100170040.
  • 16. Guérin G, Combès B, Lahaye C, Thomsen K, Tribolo C, Urbanova P, Guibert P, Mercier N and Valladas H, 2015. Testing the accuracy of a Bayesian central-dose model for single-grain OSL, using known-age samples. Radiation Measurements 74: 1–9, DOI 10.1016/j.radmeas.2015.04.002.
  • 17. Guérin G, Myank J, Thomsen K, Murray A and Mercier N, 2015. Modelling dose rate to single grains of quartz in well-sorted sand samples: The dispersion arising from the presence of potassium feldspars and implications for single grain OSL dating. Quaternary Geochronology 27: 52–65, DOI 10.1016/j.quageo.2014.12.006.
  • 18. Guérin G, Mercier N and Adamiec G, 2011. Dose-rate conversion factors: update. Ancient TL 29: 5–8.
  • 19. Guibert P, Christophe C, Urbanova P, Guérin G and Blain S, 2000. Modeling incomplete and heterogeneous bleaching of mobile grains partially exposed to the light: towards a new tool for single grain OSL dating of poorly bleached mortars. Radiation Measurements. Submitted.
  • 20. Guibert P, Bailiff IK, Blain S, Gueli AM, Martini M, Sibilia E, Stella G and Troja S, 2009a. Luminescence dating of architectural ceramics from an early medieval abbey: the St-Philbert intercomparison (Loire Atlantique, France). Radiation Measurements 44: 488–493, DOI 10.1016/j.radmeas.2009.06.006.
  • 21. Guibert P, Lahaye C and Bechtel F, 2009b. The importance of U-series disequilibrium of sediments in luminescence dating: a case study at the Roc de Marsal cave (Dordogne, France). Radiation Measurements 44: 223–231, DOI 10.1016/j.radmeas.2009.03.024.
  • 22. Guibert P and Schvoerer M, 1991. TL-dating: Low background gamma spectrometry as a tool for the determination of the annual dose. Nuclear Tracks Radiation Measurements 18(1–2): 231–238, DOI 10.1016/1359-0189(91)90117-Z.
  • 23. Hourcade D and Maurin L, 2013. Mars Grannus à Cassinomagus (Chassenon, Charente). Aquitania 29: 137–153. (in French).
  • 24. Hourcade D, Calamy L, Méaudre JC, Morin T, Robert B and Soulas S, 2010.Thermes de Longeas: Le rez de chaussée des thermes. Cour de chauffe et systèmes de soutènement des thermes de Chassenon. Report 2012, (Longeas thermal baths: ground floor of the baths. Heating yard and supporting system of thermal baths in Chassenon. Report 2012), SRA Pointou-Charentes, SRA PointouCharentes.
  • 25. Hourcade D, 2013. Amphithéâtre du Palais-Gallien (Palais-Gallien amphitheatre). 80–88 In: C. Doulan (dir.), Bordeaux Carte archéologique de la Gaule 33(2): Paris.
  • 26. Hourcade D, Bernard K, Bost JP, Coutelas A, Doulan C, Espinasse L, Guibert P, Jean-Courret E, Maleret S, Meunier C, Michel C, Mora P, Morin T, Piot A, Régaldo P, Sanchez C, Sireix C and Soulas S, 2011. Le Palais-Gallien de Bordeaux. Histoire et architecture (2010–2012). (Palais-Gallien of Bordeaux. History and architecture (2010–2012)). Rapport 2011, 3 vol., SRA Aquitaine, 900 p. (in French).
  • 27. Hueglin S, 2011. Medieval Mortar Mixers Revisited. Basle and Beyond. Zeitschrift für Archäologie des Mittelalters 39: 189–212.
  • 28. Jacobs Z, Duller GAT, Wintle AG, 2006. Interpretation of single grain De distributions and calculation of De. Radiation Measurements 41: 264-277, DOI 10.1016/j.radmeas.2005.07.027.
  • 29. Jacobs Z, Hayes EE, Roberts GR, Galbraith RF and Henshilwood CS, 2013. An improved OSL chronology for the Still Bay layers at Blombos Cave, South Africa: further tests of single-grain dating procedures and a re-evaluation of the timing of the Still Bay industry across southern Africa. Journal of archaeological science 40: 579–594, DOI 10.1016/j.jas.2012.06.037.
  • 30. Jain M, Thomsen KJ, Bøtter-Jensen L and Murray AS, 2004. Thermal transfer and apparent-dose distributions in poorly bleached mortar samples: results from single grains and small aliquots of quartz. Radiation Measurements 38: 101–109, DOI 10.1016/j.radmeas.2003.07.002.
  • 31. Krbetschek MR, Göetze J, Dietrich A and Trautmann T, 1998. Spectral information from minerals relevant for luminescence dating. Radiation Measurements 27: 695–748, DOI 10.1016/S1350- 4487(97)00223-0.
  • 32. Lanos P and Dufresne P, 2013. Chassenon (Charente) Thermes de Cassinmagus, Cave 10. Analyse archéomagnétique. (Chassenon (Charente) Cassinmagus thermal baths, Cave 10. Archeomagnetic analyses). Rapport 2013. (in French).
  • 33. Lanos P and Dufresne P, 2013. Antibes (Alpes-Maritimes), Château Grimaldi, Mur MR 10003. Analyse archéomagnétique. (Antibes (Alpes-Maritimes), Grimaldi Castle, Wall MR 10003. Archeomagnetic analyses). Rapport 2013. (in French).
  • 34. Lanos P and Dufresne P, 2013. Palais-Gallien (Bordeaux). Analyse archéomagnétique. (Palais-Gallien (Bordeaux). Archeomagnetic analyses). Rapport 2013. (in French).
  • 35. Lebrun B, Tribolo C, Martin L and Mercier N, in preparation. Assessing OSL equivalent doses dispersion through sediment modeling: a case study of dose rate heterogeneities simulation for West African sediments. (UK Luminescence and ESR Meeting 2016 Liverpool) in preparation.
  • 36. Liritzis I, Mavrikis D, Zacharias N, Sakalis A, Tsirliganis N and Polymeris GS, 2011. Potassium determinations using SEM, FAAS and XRF: Some experimental notes. Mediterranean Archaeology and Archaeometry 11(2): 169–179.
  • 37. Martin L, Mercier N, Incerti S, Lefrais Y, Pecheyran C, Guérin G, Jarry M, Bruxelles L, Bon F and Pallier C, 2015. Dosimetric study of sediments at the beta dose rate scale: Characterization and modelization with the DosiVox software. Radiation Measurements 81: 134–141, 10.1016/j.radmeas.2015. 02.008.
  • 38. Mayya YS, Mortheka P, Murari MK and Singhvi AK, 2006. Towards quantifying beta microdosimetric effects in single-grain quartz dose distribution. Radiation Measurements 41: 1032–1039, DOI 10.1016/j.radmeas.2006.08.004.
  • 39. Medialdea A, Thomsen KJ, Murray AS and Benito G, 2014. Reliability of equivalent-dose determination and age-models in the OSL dating of historical and modern palaeoflood sediments. Radiation Measurements 22: 11–24, DOI 10.1016/j.quageo.2014.01.004.
  • 40. Mejdahl V, 1979. Thermoluminescence dating: beta-dose attenuation in quartz grains. Archaeometry 21: 61–72, DOI 10.1111/j.1475- 4754.1979.tb00241.x.
  • 41. Michel A, 2012. Autour de l'identification des mausolées: le cas de Saint-Seurin de Bordeaux. Mausolées & Églises, IVe -VIIIe siècle. (About the identification of mausoleums: case study of Saint Seurin in Bordeaux. Mausolées & Churches, IVth-VIIIth century, Hortus Artium Medievalium). Hortus Artium Medievalium, 18(2). (in French).
  • 42. Murray AS and Roberts RG, 1998. Measurement of the equivalent dose in quartz using a regenerative-dose single-aliquot protocol. Radiation Measurements 29: 503–515, DOI 10.1016/S1350- 4487(98)00044-4.
  • 43. Murray AS and Wintle A, 2000. Luminescence dating of quartz using an improved single-aliquot regenerative dose protocol. Radiation Measurements 32: 523–538, DOI 10.1016/S1350-4487(99)00253-X.
  • 44. Murray AS and Olley JM, 2002. Precision and accuracy in the optically stimulated luminescence dating of sedimentary quartz: a status review. Geochronometria 21: 1–16.
  • 45. Panzeri L, 2013. Mortar and surface dating with optically stimulated luminescence (OSL): innovative techniques for the age determination of buildings. Nuovo Cimento della 36(4): 205–216.
  • 46. Pietzch TJ, Olley JM and Nanson GC, 2008. Fluvial transport as a natural luminescence sensitiser of quartz. Quaternary Geochronology 3: 365–376, DOI 10.1016/j.quageo.2007.12.005.
  • 47. Ruffer D and Preusser F, 2009. Potential of autoradiography to detect spatially resolved radiation patterns in the context of trapped charge dating. Geochronometria 34: 1–13, DOI 10.2478/v10003- 009-0014-4.
  • 48. Sanzelle S, Fain J and Mailler D, 1986. Theoretical and experimental study of alpha counting efficiency using LR-115 Kodak SSTND applied to dosimetry in the field of thermoluminescence dating. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements 12: 913–916, DOI 10.1016/1359-0189(86)90733-8.
  • 49. Sim AK, Thomsen KJ, Murray AS, Jacobsen G, Drysdale R and Erskine W, 2013. Dating recent floodplain sediments in the HawkesburyNepean river system using single grain quartz OSL. Boreas 43(1): 1–21, DOI 10.1111/bor.12018.
  • 50. Stella G, Fontana D, Gueli AM and Troja SO, 2013. Historical mortars dating from OSL signals of fine grain fraction enriched in quartz. Geochronometria 40(3): 153–164, DOI 10.2478/s13386-013- 0107-8.
  • 51. Thomsen KJ, Murray A and Jain M, 2012. The dose dependency of the over-dispersion of quartz OSL single grain dose distributions. Radiation Measurements 47: 732–739, DOI 10.1016/j.radmeas.2012.02.015.
  • 52. Thomsen KJ, Murray AS, Bøtter-Jensen L and Kinahan J, 2007. Determination of burial dose in incompletely bleached fluvial samples using single grains of quartz. Radiation Measurements 42(3): 370– 379, DOI 10.1016/j.radmeas.2007.01.041.
  • 53. Thomsen KJ, Murray A and Bøtter-Jensen L, 2005. Sources of variability in OSL dose measurements using single grains of quartz. Radiation Measurements 39: 47–61, DOI 10.1016/j.radmeas.2004.01.039.
  • 54. Thomsen KJ, Jain M, Bøtter-Jensen L, Murray AS and Jungner H, 2003. Variation with depth of dose distributions in single grains of quartz extracted from an irradiated concrete block. Radiation Measurements 37: 315–321, DOI 10.1016/S1350-4487(03)00006-4.
  • 55. Urbanová P, Hourcade D, Ney C and Guibert P, 2015. Sources of uncertainties in OSL dating of archaeological mortars: the case study of the Roman amphitheatre Palais-Gallien in Bordeaux. Radiation Measurements 72: 100–110, DOI 10.1016/j.radmeas.2014.11.014.
  • 56. Urbanová P, Delaval E, Dufresne P, Lanos P and Guibert P, 2016. Multi-method dating comparison of Grimaldi castle foundations in Antibes, France. ArchéoSciences - Revue d'archéométrie, 40: 17– 33.
  • 57. Urbanová P and Guibert P, 2017. La mesure du temps par luminescence: datation de réemplois dans la crypte de Saint Seurin à Bordeaux. Dossier « Atelier doctoral. Les remplois en architecture entre Antiquité et Moyen Âge » of Mélanges de l’École française de Rome. (Measurement of time by luminescence: dating of spolia in the crypt of Saint Seurin, Bordeaux. Dossier « Doctoral atelier. Reuse in architecture between Antiquity and Middle Ages » of Mé- langes de l’École française de Rome). 129, 1. (in French).
  • 58. Wagner GA, Glasmacher UA and Greilich S, 2005. Spatially resolved dose-rate determination in rocks and ceramics by neutron-induced fission tracks: fundamentals. Radiation Measurements 40: 26–31, DOI 10.1016/j.radmeas.2004.09.005.
  • 59. Wintle AG and Murray AS, 2006. A review of quartz optically stimulated luminescence characteristics and their relevance in singlealiquot regeneration dating protocols. Radiation Measurements 41(4): 369–391, DOI 10.1016/j.radmeas.2005.11.001.
  • 60. Zacharias N, Mauz B and Michael CT, 2002. Luminescence quartz dating of lime mortars. A first research approach. Radiation Protection Dosimetry 101: 379–382.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-22116bf6-b0c1-4d8b-8437-f8f451351166
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.