PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Seasonal carbonate system vis-à-vis pH and Salinity in selected tropical estuaries: Implications on polychaete diversity and composition towards predicting ecological health

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Salinity and pH play a fundamental role in structuring spatial patterns of physical properties, biota, and biogeochemical processes in the estuarine ecosystem. In this study, the influence of salinity-pH gradient and carbonate system on polychaete diversity in Ennore, Uppanar, Vellar, and Kaduvaiyar estuaries was investigated. Water and sediment samples were collected from September 2017 to August 2018. Univariate and multivariate statistical analyses were employed to define ecological status. Temperature, salinity, pH, and partial pressure of carbon-di-oxide varied between 21 and 30°C; 29 and 39 ppt; 7.4 and 8.3; and 89.216 and 1702.558 µatm, respectively. PCA and CCA results revealed that DO, chlorophyll, carbonate species, and sediment TOC have a higher influence on polychaete community structure. Forty-two species such as Ancistrosyllis parva, Cossura coasta, Eunice pennata, Euclymene annandalei, Lumbrineris albidentata, Capitella capitata, Prionospio cirrifera, P. pinnata, P. cirrobranchiata, and Notomastus sp. were found dominantly in all estuaries. Shannon index values ranged between 1.619 (UE-1) and 3.376 (VE-2). Based on these findings, high levels of carbonate species and low pH have a greater impact on polychaete diversity and richness values. The results of the AMBI Index revealed that stations UE-1, UE-2, UE-3 in Uppanar, EC-1, EC-2 in Ennore indicate “moderately disturbed”, while other stations are under the “slightly disturbed” category. This trend was quite evident in M-AMBI as well.
Słowa kluczowe
Czasopismo
Rocznik
Strony
346--362
Opis fizyczny
Bibliogr. 89 poz., maps., rys., tab., wykr.
Twórcy
  • Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Tamil Nadu, India
  • Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Tamil Nadu, India
  • Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Tamil Nadu, India
  • Department of Biotechnology, Sri Kaliswari College (Autonomous), Sivakasi -626130
  • Rengasamy
Bibliografia
  • 1. Anonymous, 1959. The Venice system for the classification of marine waters according to salinity: Symposium on the classification of brackish waters, Venice, 8-14th April 1958. Jap. J. Limnol. 20 (3), 119-120. https://doi.org/10.4319/lo.1958.3.3.0346
  • 2. Bharathi, M.D., Sarma, V.V.S.S., Ramaneswari, K., 2018. Intra-annual variations in phytoplankton biomass and its composition in the tropical estuary: Influence of river discharge. Mar. Pollut. Bull. 129, 14-25.
  • 3. Bianchi, T.S., 2007. Biogeochemistry of estuaries. Oxford University Press (on demand).
  • 4. Bochert, R., Fritzsche, D., Burckhardt, R., 1996. Influence of salinity and temperature on growth and survival of the planktonic larvae of Marenzelleria viridis (Polychaeta, Spionidae). J. Plankton Res. 18, 1239-1251. https://doi.org/10.1093/plankt/18.7.1239
  • 5. Borja, A., Dauer, D.M., Diaz, R., Llansó, R.J., Muxika, I., Rodriguez, J.G., Schaffner, L., 2008. Assessing estuarine benthic quality conditions in Chesapeake Bay: a comparison of three indices. Ecol. Indic. 8, 395-403.
  • 6. Borja, A., Franco, J., Pérez, V., 2000. A marine biotic index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environments. Mar. Pollut. Bull. 40, 1100-1114.
  • 7. Bouillon, S., Frankignoulle, M., Dehairs, F., Velimirov, B., Eiler, A., Abril, G., Etcheber, H., Borges, A.V., 2003. Inorganic and organic carbon biogeochemistry in the Gautami Godavari estuary (Andhra Pradesh, India) during pre-monsoon: The local impact of extensive mangrove forests. Global Biogeochem. Cy. 17 (4).
  • 8. Cauwet, G., 1991. Carbon inputs and biogeochemical processes at the halocline in a stratified estuary: Krka River, Yugoslavia. Mar. Chem. 32, 269-283. https://doi.org/10.1016/0304-4203(91)90043-V
  • 9. Chang, H., 2008. Spatial analysis of water quality trends in the Han River basin. South Korea. Water. Res. 42, 3285-3304.
  • 10. Cloern, J.E., Jassby, A.D., Schraga, T.S., Nejad, E., Martin, C., 2017. Ecosystem variability along the estuarine salinity gra- dient: Examples from long-term study of San Francisco Bay. Limnol. Oceanogr. 62, 272-291. https://doi.org/10.1002/lno.10537
  • 11. Costa, C.J., Pierce, S.K., Warren, M.K., 1980. The intracellular mechanism of salinity tolerance in polychaetes: volume regulation by isolated Glycera dibranchiata red coelomocytes. Biol. Bull. 159 (3), 626-638.
  • 12. Day, J.H., 1967. A monograph on the Polychaeta of Southern Africa. British Museum of Natural History, Publ. 656, 1-878. https://doi.org/10.5962/bhl.title.8596
  • 13. Dean, H.K., 2008. The use of polychaetes (Annelida) as indicator species of marine pollution: a review. Rev. Biol. Trop. 56, 11-38. http://www.redalyc.org/articulo.oa?id=44919934004
  • 14. Dickinson, G.H., Ivanina, A.V., Matoo, O.B., Pörtner, H.O., Lannig, G., Bock, C., Beniash, E., Sokolova, I.M., 2012. Interactive effects of salinity and elevated CO2 levels on juvenile eastern oysters, Crassostrea virginica. J. Exp. Biol. 215, 29-43. https://doi.org/10.1242/jeb.061481
  • 15. Doney, S.C., Fabry, V.J., Feely, R.A., Kleypas, J.A., 2009. Ocean acidification: the other CO2 problem. Annu. Rev. Mar. Sci. 1, 169-192. https://doi.org/10.1146/annurev.marine.010908.163834
  • 16. Dutta, M.K., Kumar, S., Mukherjee, R., Sanyal, P., Mukhopadhyay, S.K., 2019. The post-monsoon carbon biogeochemistry of the Hooghly—Sundarbans estuarine system under different levels of anthropogenic impacts. Biogeosciences 16, 289-307. https://doi.org/10.5194/bg- 16- 289- 2019
  • 17. El Wakeel, S.K., Riley, J.P., 1957. The determination of organic carbon in marine muds. J. Mar. Sci. 22, 180-183.
  • 18. Fauchald, K., Jumars, P.A., 1979. The diet of worms: a study of polychaete feeding guilds. Oceanogr. Mar. Biol. Ann. Rev. 17, 193-284.
  • 19. Fauvel, P., 1953. The Fauna of India including Pakistan, Ceylon, Burma and Malaya. Annelida Polychaeta. Indian Press, Allahabad, 507 pp.
  • 20. Field, D.J., 1987. Relations between the statistics of natural images and the response properties of cortical cells. J. Opt. Soc. Am. A. 4, 2379-2394. https://doi.org/10.1364/JOSAA.4.002379
  • 21. Fiorino, E., Sehonova, P., Plhalova, L., Blahova, J., Svobodova, Z., Faggio, C., 2018. Effects of glyphosate on early life stages: comparison between Cyprinus carpio and Danio rerio. Environ. Sci. Pollut. R. 25, 8542-8549. https://doi.org/10.1007/s11356- 017- 1141- 5
  • 22. Flint, R.W., 1981. Gulf of Mexico Outer Continental Shelf Benthos: Macroinfaunal-Environmental Relationships. Biol. Oceanogr. 1, 135-155.
  • 23. Frankignoulle, M., Abril, G., Borges, A.V., Bourge, I., Canon, C., DeLille, B., Libert, E., Théate, J.M., 1998. Carbon dioxide emissions from European estuaries. Science 282, 434-436. https://doi.org/10.1126/science.282.5388.434
  • 24. Freel, R.W., Medler, S.G., Clark, M.E., 1973. Solute adjustments in the coelomic fluid and muscle fibers of a euryhaline polychaete, Neanthes succinea, adapted to various salinities. Biol. Bull. 144(2), 289-303. https://doi.org/10.2307/1540009
  • 25. Freitas, R., Pires, A., Moreira, A., Wrona, F.J., Figueira, E., Soares, A.M., 2016. Biochemical alterations induced in Hediste diversicolor under seawater acidification conditions. Mar. Environ. Res. 117, 75-84. https://doi.org/10.1016/j.marenvres. 2016.04.003
  • 26. Gambi, M.C., Musco, L., Giangrande, A., Badalamenti, F., Micheli, F., Kroeker, K.J., 2016. Distribution and functional traits of polychaetes in a CO2 vent system: winners and losers among closely related species. Mar. Ecol. Prog. Ser. 550, 121-134.
  • 27. Gattuso, J.P., Epitalon, J.M., Lavigne, H., Orr, J., Gentili, B., Hagens, M., Hofmann, A., Mueller, J.D., Proye, A., Rae, J., Soetaert, K., 2019. Package ‘seacarb’. https://CRAN.R-project.org/package=seacarb
  • 28. Gran, G., 1952. Determination of the equivalence point in potentiometric titrations. Part II. Analyst. 77, 661. https://doi.org/10.1039/an9527700661
  • 29. Gray, J.S., 1974. Animal—sediment relationships. Oceanogr. Mar. Biol. Annu. Rev. 12, 223-226.
  • 30. Gu, D., Zhang, L., Jiang, L., 2009. The effects of estuarine processes on the fluxes of inorganic and organic carbon in the Yellow River estuary. J. Ocean. U. China 8, 352-358. https://doi.org/10.1007/s11802- 009-0352-x
  • 31. Guinotte, J.M., Fabry, V.J., 2008. Ocean acidification and its potential effects on marine ecosystems. Ann. N. Y. Acad. Sci. 1134, 320-342. https://doi.org/10.1196/annals.1439.013
  • 32. Gupta, G.V., Sarma, V.V., Robin, R.S., Raman, A.V., Kumar, M.J., Rakesh, M., Subramanian, B.R., 2008. Influence of net ecosystem metabolism in transferring riverine organic carbon to atmospheric CO2 in a tropical coastal lagoon (Chilka Lake, India). Biogeochemistry 87, 265-285. https://doi.org/10.1007/s10533-008-9183-x
  • 33. Hily, C., Le Bris, H., Glémarec, M., 1986. Impacts biologiques des émissaires urbains sur les écosystèmes benthiques. Oceanis 12, 419-426.
  • 34. Ho, M., Carpenter, R.C., 2017. Differential growth responses to water flow and reduced pH in tropical marine macroalgae. J. Exp. Mar. Biol. Ecol. 491, 58-65. https://doi.org/10.1016/j.jembe.2017.03.009
  • 35. Hutchins, R.H.S., Prairie, Y.T., del Giorgio, P.A., 2019. Large-scale landscape drivers of CO2 , CH4 , DOC, and DIC in Boreal River networks. Global Biogeochem. Cy. 33, 125-142. https://doi.org/10.1029/2018GB006106
  • 36. Ingole, B., Sivadas, S., Nanajkar, M., Sautya, S., Nag, A., 2009. A comparative study of macrobenthic community from harbours along the central west coast of India. Environ. Monit. Assess. 154, 135. https://doi.org/10.1007/s10661-008-0384-5
  • 37. Jayaraj, K.A., Jayalakshmi, K.V., Saraladevi, K., 2007. Influence of environmental properties on macrobenthos in the northwest Indian shelf. Environ. Monit. Assess. 127, 459-475. https://doi.org/10.1007/s10661-006-9295-5
  • 38. Khan, S.A., Manokaran, S., Lyla, P.S., 2014. Assessment of ecological quality of Vellar and Uppanar estuaries, southeast coast of India, using Benthos. Indian. J. Mar. Sci. 43, 1989-1995.
  • 39. Krumbein, W.C., Pettijohn, F.J., 1938. Manual of sedimentary petrography. Appleton-Century Crofts, New York.
  • 40. Lannig, G., Eilers, S., Pörtner, H.O., Sokolova, I.M., Bock, C., 2010. Impact of ocean acidification on energy metabolism of oyster, Crassostrea gigas-changes in metabolic pathways and thermal response. Mar. Drugs 8, 2318-2339. https://doi.org/10.3390/md8082318
  • 41. Le Quéré, C., Andrew, R., Canadell, J.G., Sitch, S., Korsbakken, J.I., Peters, G.P., Manning, A.C., Boden, T.A., Tans, P.P., Houghton, R.A., Keeling, R.F., 2016. Global carbon budget 2016. Earth. Syst. Sci. 8, 605-649. https://doi.org/10.5194/essd-8-605-2016
  • 42. Majeed, S.A., 1987. Organic matter and biotic indices on the beaches of North Brittany. Mar. Pollut. Bull. 18, 490-495.
  • 43. Marescaux, A., Thieu, V., Borges, A.V., Garnier, J., 2018. Seasonal and spatial variability of the partial pressure of carbon dioxide in the human-impacted Seine River in France. Sci. Rep. 8, 13961. https://doi.org/10.1038/s41598-018-32332-2
  • 44. Margalef, R., 1958. Information theory in ecology. Gen. Syst. 3, 36-71.
  • 45. Molari, M., Guilini, K., Lins, L., Ramette, A., Vanreusel, A., 2019. CO2 leakage can cause loss of benthic biodiversity in submarine sands. Mar. Environ. Res. 144, 213-229.
  • 46. Morgan, A.M., Royer, T.V., David, M.B., Gentry, L.E., 2006. Relationships among nutrients, chlorophyll-a, and dissolved oxygen in agricultural streams in Illinois. J. Environ. Qual. 35, 1110-1117. https://doi.org/10.2134/jeq2005.0433
  • 47. Mukherjee, J., Banerjee, M., Banerjee, A., Roy, M., Ghosh, P.B., Ray, S., 2014. Impact of environmental factors on the carbon dynamics at Hooghly estuarine region. J. Ecosyst. 1-10. https://doi.org/10.1155/2014/607528, 2014
  • 48. Murugesan, P., Sarathy, P.P., Muthuvelu, S., Mahadevan, G., 2018. Diversity and distribution of polychaetes in mangroves of east coast of India. Mangrove Ecosystem Ecology and Function. 107 pp. https://doi.org/10.5772/Intechopen.78332
  • 49. Musale, A.S., Desai, D.V., Sawant, S.S., Venkat, K., Anil, A.C., 2015. Distribution and abundance of benthic macro organisms in and around Visakhapatnam Harbour on the east coast of India. J. Mar. Biol. Assoc. UK 95, 215-231. https://doi.org/10.1017/S0025315414001490
  • 50. Muxika, I., Borja, A., Bald, J., 2007. Using historical data, expert judgement and multivariate analysis in assessing reference conditions and benthic ecological status, according to the European Water Framework Directive. Mar. Pollut. Bull. 55, 16-29.
  • 51. Natesan, U., Kalaivani, S., Kalpana, G., 2017. Pollution assessment of Ennore (India) creek using macrobenthos. J. Environ. Geol. 1, 9-16. https://doi.org/10.4172/2591-7641.1000004
  • 52. Nikinmaa, M., 2013. Climate change and ocean acidification-Interactions with aquatic toxicology. Aquat. Toxicol. 126, 365-372. https://doi.org/10.1016/j.aquatox.2012.09.006
  • 53. Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O’Hara, R.B., Simpson, G.L., Solymos, P., Stevens, M.H.F., 2017. Vegan: Community Ecology Package R package version 2.4-3. https://cran.r-project.org
  • 54. Oliveira, A., Pilar-Fonseca, T., Cabeçadas, G., Mateus, M., 2018. Local Variability of CO2 Partial Pressure in a Mid-Latitude Mesotidal Estuarine System (Tagus Estuary, Portugal). Geosci. J. 8, 460.
  • 55. https://doi.org/10.3390/geosciences8120460
  • 56. Onwuteaka, J., 2016. Salinity induced longitudinal zonation of polychaete fauna on the Bonny River Estuary. Annu. Res. Rev. Biol. 10 (2), 1-14. https://doi.org/10.9734/ARRB/2016/23682
  • 57. Palanivel, P.S., Veeraiyan, B., Palingam, G., Perumal, M., 2019. Influence of physico-chemical parameters and pCO2 concentration on mangroves-associated polychaetes at Pichavaram, southeast coast of India. SN Appl. Sci. 1 (12), 1550. https://doi.org/10.1007/s42452-019-1581-2
  • 58. Papageorgiou, N., Arvanitidis, C., Eleftheriou, A., 2006. Multicausal environmental severity: A flexible framework for microtidal sandy beaches and the role of polychaetes as an indicator taxon. Estuar. Coast. Shelf Sci. 70, 643-653. https://doi.org/10.1016/j.ecss.2005.11.033
  • 59. Pearson, T.H., Rosenberg, R., 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanogr. Mar. Biol. Annu. Rev. 16, 229-311.
  • 60. Pielou, E.C., 1966. The measurement of diversity in different types of biological collections. J. Theor. Biol. 13, 131-144. https://doi.org/10.1016/0022- 5193(66)90013- 0
  • 61. Plhalova, L., Blahova, J., Divisova, L., Enevova, V., Casuscelli di Tocco, F., Faggio, C., Tichy, F., Vecerek, V., Svobodova, Z., 2018. The effects of subchronic exposure to Neem Azal T/S on zebrafish (Danio rerio). Chem. Ecol. 34, 199-210. https://doi.org/10.1080/02757540.2017.1420176
  • 62. Quinn, R.H., Bashor, D.P., 1982. Regulation of coelomic chloride and osmolarity in Nereis virens in response to low salinities. Comp. Biochem. Phys. A: Phys. 72 (1), 263-265.
  • 63. R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
  • 64. Rajasegar, M., Srinivasan, M., Khan, S.A., 2002. Distribution of sediment nutrients of Vellar estuary in relation to shrimp farming. Indian J. Mar. Sci. 31, 153-156.
  • 65. Ray, R., Baum, A., Rixen, T., Gleixner, G., Jana, T.K., 2018. Exportation of dissolved (inorganic and organic) and particulate carbon from mangroves and its implication to the carbon budget in the Indian Sundarbans. Sci. Total. Environ. 621, 535-547. https://doi.org/10.1016/j.scitotenv.2017.11.225
  • 66. Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie, F.T., Gruber, N., Janssens, I.A., Laruelle, G.G., Lauerwald, R., Luyssaert, S., Andersson, A.J., Arndt, S., 2013. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat. Geosci. 6, 597. https://doi.org/10.1038/ngeo1830
  • 67. Richmond, C.E., Woodin, S.A., 1999. Effect of salinity reduction on oxygen consumption by larval estuarine invertebrates. Mar. Biol. 134 (2), 259-267. https://doi.org/10.1007/s002270050544
  • 68. Rodriguez-Romero, A., Basallote, M.D., Manoela, R., DelValls, T.Á., Riba, I., Blasco, J., 2014a. Simulation of CO2 leakages during injection and storage in sub-seabed geological formations:
  • 69. metal mobilization and biota effects. Environ. Int. 68, 105-117. https://doi.org/10.1016/j.envint.2014.03.008
  • 70. Rodríguez-Romero, A., Jiménez-Tenorio, N., Basallote, M.D., Orte, M.R.D., Blasco, J., Riba, I., 2014b. Predicting the impacts of CO2 leakage from subseabed storage: effects of metal accumulation and toxicity on the model benthic organism Ruditapes philippinarum. Environ. Sci. Technol. 48, 12292-12301. https://doi.org/10.1021/es501939c
  • 71. Sanders, H.L., 1958. Benthic studies in Buzzards Bay. I. Animal sediment relationships. Limnol. Oceanogr. 3, 245-258. https://doi.org/10.4319/lo.1958.3.3.0245
  • 72. Selvaraj, P., Murugesan, P., Punniyamoorthy, R., Parthasarathy, P., Marigoudar, S.R., 2019. Assessment of the ecological health of Vellar and Ennore estuarine ecosystems using health indices. Indian J. Mar. Sci. 48 (10), 1580-1592.
  • 73. Senthilnathan, S., Balasubramanian, T., 1994. Heavy Metals in Plankton of Uppanar, Vellar and Kaduviar Estuaries of Southeast Coast of India. Chem. Ecol. 9, 41-46. https://doi.org/10.1080/02757549408038561
  • 74. Shannon, C.E., Weaver, W., 1964. The Mathematical Theory of Communication. Univ. Illinois Press, Urbana, 125 pp., https://monoskop.org/images/b/be/Shannon_Claude_E_Weaver_Warren_The_Mathematical_Theory_of_Communication_1963.pdf
  • 75. Shanthi, R., Poornima, D., Raja, K., Sarangi, R.K., Saravanakumar, A., Thangaradjou, T., 2015. Inter-annual and seasonal variations in hydrological parameters and its implications on chlorophyll a distribution along the southwest coast of Bay of Bengal. Acta Oceanologica Sinica 34, 94-100. https://doi.org/10.1007/s13131-015-0689-5
  • 76. Sigamani, S., Perumal, M., Arumugam, S., Jose, H.P.M., Veeraiyan, B., 2015. AMBI indices and multivariate approach to assess the ecological health of Vellar—Coleroon estuarine system undergoing various human activities. Mar. Poll. Bull. 100, 334-343
  • 77. Sigamani, S., Samikannu, M., Alagiri, T.G., 2019. Assessment of effluent stressed ecosystem of Cuddalore coastal waters—a bioindicator approach. Thalassas: Int. J. Mar. Sci. 35 (2), 437-449. https://doi.org/10.1007/s41208-019-00128-4
  • 78. Sivaleela, G., Venkataraman, K., 2013. Diversity and Distribution of Benthic Foraminifera from Tamilnadu Coast. India. Rec. Zool. Surv. India 113, 1-12.
  • 79. Sivaraj, S., Murugesan, P., Muthuvelu, S., Vivekanandan, K.E., Vijayalakshmi, S., 2014. AMBI and M-AMBI indices as a robust tool for assessing the effluent stressed ecosystem in Nandgaon Coastal waters, Maharashtra, India. Estuar. Coast. Shelf. Sci 146, 60-67. https://doi.org/10.1016/j.ecss.2014.05.024
  • 80. Smith, R.I., 1970. Hypo-osmotic urine in Nereis diversicolor. J. Exp. Biol. 53 (1), 101-108.
  • 81. Snelgrove, P.V.R., Butman, C.A., 1994. Animal—sediment relationships revisited: cause versus effect. Oceanogr. Mar. Biol. Annu. Rev. 32, 111-177.
  • 82. Strickland, J.D., Parsons, T.R., 1972. A practical handbook of sea-water analysis. Bull. Fish Res. Bd. Can. 167, 1-310.
  • 83. Thasneem, T.A., Nandan, S.B., Geetha, P.N., 2018. Water quality status of Cochin estuary. India. Indian. J. Mar. Sci. 47, 978-989. Toma, J.J., 2013. Limnological study of Dokan, Derbendikhan and Duhok lakes, Kurdistan region of Iraq. Open. J. Ecol. 3, 23.
  • 84. https://doi.org/10.4236/oje.2013.31003
  • 85. Vajravelu, M., Martin, Y., Ayyappan, S., Mayakrishnan, M., 2018. Seasonal influence of physico-chemical parameters on phytoplankton diversity, community structure and abundance at Parangipettai coastal waters, Bay of Bengal, South East Coast of India. Oceanologia 60 (2), 114-127.
  • 86. Van Gaest, A.L., Young, C.M., Young, J.J., Helms, A.R., Arellano, S.M., 2007. Physiological and behavioral responses of Bathynerita naticoidea (Gastropoda: Neritidae) and Methanoaricia dendrobranchiata (Polychaeta: Orbiniidae) to hypersaline conditions at a brine pool cold seep. Mar. Ecol. 28 (1), 199-207. https://doi.org/10.1111/j.1439-0485.2006.00147.x
  • 87. Veron, J.E., 2011. Ocean acidification and coral reefs: an emerging big picture. Diversity 3, 262-274. https://doi.org/10.3390/d3020262
  • 88. Wickham, H., François, R., Henry, L., Müller, K., 2018. dplyr: A Grammar of Data Manipulation. R package version 0.7.5. https://CRAN.R-project.org/package=dplyr
  • 89. Wu, F., Kothawala, D., Evans, R., Dillon, P., Cai, Y., 2007. Relationships between DOC concentration, molecular size and fluorescence properties of DOM in a stream. Appl. Geochem. 22, 1659-1667. https://doi.org/10.1016/j.apgeochem.2007.03.024
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-22094e17-d0b3-4afd-82aa-4ecf20983bae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.