PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental investigation of SRS polarization pulling in depleted pump regime for various pump SOPs

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article presents an experimental investigation of polarization pulling based on stimulated Raman scattering induced by a continuous, fully polarized pump wave in an optical fibre. By means of probe wave states of polarization aggregation, degree of polarization and gain analysis, an assessment of all-optical polarization control, repolarization and amplification in a standard single mode fibre in depleted pump regime is presented. Polarization pulling is proved to be dependent on fibre length, pump power, and pump state of polarization, with respect to pump depletion effect, acting oppositely to the polarization pulling effect. Authors evaluate results aiming to obtain a configuration of stimulated Raman scattering parameters, which allows for the most effective polarization pulling, with respect to statistical stability of the process measured by standard deviation of polarization degree and polarization-dependent gain of the probe wave. The highest polarization attraction efficiency was obtained for 15 km, 0.97 W and the horizontal polarization state of the pump wave.
Rocznik
Strony
art. no. e149381
Opis fizyczny
Bibliogr. 24 poz., rys., tab., wykr.
Twórcy
  • Dawis IT Sp. z o.o., ul. Staszica 1, 05-800 Pruszków, Poland
  • Institute of Telecommunications, Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw, Poland
  • Institute of Telecommunications, Warsaw University of Technology, ul. Nowowiejska 15/19, 00-665 Warsaw, Poland
Bibliografia
  • [1] Elschner, R., Richter, T. & Schubert, C. Characterization of FWM-Induced Crosstalk for WDM Operation of A Fiber-Optical Parametric Amplifier. in 37th European Conference and Exposition on Optical Communications. Optica Publishing Group Mo.1.A.2 (Optica Publishing Group, 2011). https://doi.org/10.1364/ECOC.2011.Mo.1.A.2.
  • [2] Phillips, M. R., Wu, K.-Y. & Villarruel, F. X. Four-wave-mixing-induced crosstalk and distortion in subcarrier-multiplexedlightwave links: Theory and measurement. J. Light. Technol. 26, 2647-2652 (2008). https://doi.org/10.1109/JLT.2008.927196.
  • [3] Gu, J. et al. Polarization dependence of stimulated Brillouin scatter-ing-based switchable microwave photonic filter. Opt. Appl. 49, 5-11 (2019). https://doi.org/10.5277/oa190101.
  • [4] Soto, M. A., Tur, M., Lopez-Gil, A., Gonzalez-Herraez, M. & Thevenaz, L. Polarisation pulling in Brillouin optical time-domain analysers. Proc. SPIE 10323, 103239L (2017). https://doi.org/10.1117/12.2267649.
  • [5] Samaniego, D. & Vidal, B. Brillouin wavelength-selective all-optical polarization conversion. Photon. Res. 8, 440-447 (2020). https://doi.org/10.1364/PRJ.371513.
  • [6] Guasoni, M., Kozlov, V. V. & Wabnitz, S. Theory of polarization attraction in parametric amplifiers based on telecommunication fibers. J. Opt. Soc. Am. B 29, 2710-2720 (2012). https://doi.org/10.1364/JOSAB.29.002710.
  • [7] Fatome, J. et al. All-optical regeneration of polarization of a 40 Gbit/s return-to-zero telecommunication signal. Photon. Res. 1, 115-123 (2013). https://doi.org/10.1364/PRJ.1.000115.
  • [8] Lin, Q. & Agrawal, G. P. Vector theory of stimulated Raman scattering and its application to fiber-based Raman amplifiers. J. Opt. Soc. Am. B 20, 1616-1631 (2003). https://doi.org/10.1364/JOSAB.20.001616.
  • [9] Ursini, L., Santagiustina, M. & Palmieri, L. Raman nonlinear polarization pulling in the pump depleted regime in randomly birefringent fibers. IEEE Photon. Technol. Lett. 23, 254-256 (2011). https://doi.org/10.1109/LPT.2010.2098024.
  • [10] Martinelli, M., Cirigliano, M., Ferrario, M., Marazzi, L. & Martelli, P. Evidence of Raman-induced polarization pulling. Opt. Express 17, 947-955 (2009). https://doi.org/10.1364/OE.17.000947.
  • [11] Galtarossa, A., Palmieri, L., Santagiustina, M. & Ursini, L. Polarized backward Raman amplification in randomly birefringent fibers. J. Light. Technol. 24, 4055-4063 (2006). https://doi.org/10.1109/JLT.2006.883640.
  • [12] Muga. N. J., Ferreira, M. F. S. & Pinto, A. N. Broadband polarization pulling using Raman amplification. Opt. Express 19, 18707-18712 (2011). https://doi.org/10.1364/OE.19.018707.
  • [13] Peng, C.-W. et al. DP-QPSK coherent detection using 2D grating coupled silicon based receiver. IEEE Photon. J. 13, 1-5 (2021). https://doi.org/10.1109/JPHOT.2020.3043592.
  • [14] Li, C. et al. Convolutional neural network-aided DP-64 QAM coherent optical communication systems. J. Light. Technol. 40, 2880-2889 (2022). https://doi.org/10.1109/JLT.2022.3146839.
  • [15] Tabares, J., Ghasemi, S., Polo, V. & Prat, J. Simplified carrier recovery for intradyne optical PSK receivers in udWDM-PON. J. Light. Technol. 36, 2941-2947 (2018). https://doi.org/10.1109/JLT.2018.2831918.
  • [16] Barrio, M., Izquierdo, D., Sevillano, P. & Garcés, I. Coherent PolMux Reception Using a Low-Cost Heterodyne Receiver. in 2023 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC) 1-1 (IEEE, 2023). https://doi.org/10.1109/CLEO/Europe-EQEC57999.2023.10232301.
  • [17] Jiang, C. et al. Cross-Polarization Error Correction Enhanced Polarization-Division-Multiplexed Differential Detection System for Optical Fiber Communications. in 2023 Opto-Electronics and Communications Conference (OECC) 1-6 (IEEE, 2023). https://doi.org/10.1109/OECC56963.2023.10209856.
  • [18] Wang, S. H. & Wai, P. K. A. Polarization Pulling in Fiber Optical Parametric Amplifiers. in 2016 21st OptoElectronics and Communi-cations Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS) 1-3 (IEEE, 2016).
  • [19] Panayiotou, T., Antoniades, N. & Ellinas, G. On the impact of polarization-dependent gain/loss for optical multicast sessions. Opt. Express 22, 29827-29834 (2014). https://doi.org/10.1364/OE.22.029827.
  • [20] Bristiel, B., Jiang, S., Gallion, P. & Pincemin, E. New model of noise figure and RIN transfer in fiber Raman amplifiers. IEEE Photon. Technol. Lett. 18, 980-982 (2006). https://doi.org/10.1109/LPT.2006.873551.
  • [21] Bristiel, B., Gallion, P., Jaouen, Y. & Pincemin, E. Intrinsic noise figure derivation for fiber Raman amplifiers from equivalent noise figure measurement. in Proc. of the Lightwave Technologies in Instrumentation and Measurement Conference 135-140 (IEEE, 2004). https://doi.org/10.1109/LTIMC.2004.1371010.
  • [22] Isoe, G. M. et al. Noise Figure and Pump Reflection Power in SMF-Reach Optical Fibre for Raman Amplification. in AFRICON 2015 1-5 (IEEE, 2015). https://doi.org/10.1109/AFRCON.2015.7332036.
  • [23] Kozlov, V., Nuño, J., Ania-Castañón, J. & Wabnitz, S. Analytic theory of fiber-optic Raman polarizers. Opt. Express 20, 27242-27247 (2012). https://doi.org/10.1364/OE.20.027242.
  • [24] Kozlov, V., Nuño, J., Ania-Castañón, J. & Wabnitz, S. Theory of fiber optic Raman polarizers. Opt. Express 35, 3970-3972 (2010). https://doi.org/10.1364/OL.35.003970.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-21fff732-ed65-496a-a10e-0613a8fe860c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.