PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Susceptibility of the roll equation to the bifurcation phenomenon depending on the damping coefficient value and form of the roll damping formula

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper deals with the susceptibility of the roll equation to the bifurcation phenomenon depending on the damping coefficient value and form of the roll damping formula. Generally, the bifurcation phenomenon depends mainly on the shape of the righting arm curve (GZ curve), but roll damping also has a significant impact. The commonly used formulas for roll damping are presented, as well as values of the linear equivalent roll damping coefficient, calculated according to the simple Ikeda method. Values of the linear equivalent roll damping coefficient were calculated for a wide spectrum of roll amplitudes and roll frequencies for two ships. The loading conditions for these ships were selected to show different GZ curve characteristics. One ship has a softening spring characteristic and the second has a hardening spring characteristic. For these two ships, a number of calculations of roll spectra are presented where the bifurcation phenomenon occurs. Calculations were made for different damping coefficient values and forms of the roll damping formula.
Rocznik
Strony
161--169
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
  • Gdynia Maritime University, Faculty of Navigation, Department of Ship Operation 3 Jana Pawła II Ave., 81-345 Gdynia, Poland
Bibliografia
  • 1. Bassler, C. & Reed, A. (2010) A Method to Model Large Amplitude Ship Roll Damping, Proceedings of the 11th International Ship Stability Workshop, pp. 217–224.
  • 2. Belenky, V., Bassler, C. & Spyrou, K. (2011) Development of Second Generation Intact Stability Criteria, NSWCCD-50-TR-2011/065.
  • 3. Bulian, G. (2005) Nonlinear parametric rolling in regular waves – a general procedure for the analytical approximation of the GZ curve and its use in time domain simulation. Ocean Eng. 32, pp. 309–330.
  • 4. Contento, G., Francescutto, A. & Piciullo, M. (1996) On the Effectiveness of Constant Coefficients Roll Motion Equation. Ocean Eng. 23, pp. 597–618.
  • 5. Falzarano, J. & Taz Ul Mulk, M. (1994) Large Amplitude Rolling Motion of an Ocean Survey Vessel. Marine Technology 31, pp. 278–285.
  • 6. Francescutto, A. & Contento, G. (1999) Bifurcations in ship rolling: experimental results and parameter identification technique. Ocean Eng. 26, pp. 1095–1123.
  • 7. France, W.M., Levadou, M., Treakle, T.W., Paulling, J. R., Michel, K. & Moore, C. (2003) An Investigation of Head-Sea Parametric Rolling and its Influence on Container Lashing Systems. Marine Technology 40, 1, pp. 1–19.
  • 8. Himeno, Y. (1981) Prediction of Ship Roll Damping – State of the Art. Report of Dept. of Naval Architecture and Marine Engineering, The University of Michigan, No. 239.
  • 9. IMO (2008) Intact Stability Code.
  • 10. ITTC (2011) Recommended Procedures, Numerical Estimation of Roll Damping, ITTC.
  • 11. Kawahara, Y. (2008) Characteristics of Roll Damping of Various Ship Types and A Simple Prediction Formula of Roll Damping on the Basis of Ikeda’s Method, The 4th Asia-Pacific Workshop on Marine Hydrodynamics, Taipei, pp. 79-86.
  • 12. Kawahara, Y., Maekawa, K. & Ikeda, Y. (2009) A Simple Prediction Formula of Roll Damping of Conventional Cargo Ships on the Basis of Ikeda’s Method and Its Limitations, Proceedings of the 10th International Conference on Stability of Ships and Ocean Vehicles.
  • 13. Kawahara, Y., Maekawa, K. & Ikeda, Y. (2012) A Simple Prediction Formula of Roll Damping of Conventional Cargo Ships on the Basis of Ikeda’s Method and Its Limitations. Journal of Shipping and Ocean Engineering 2, pp. 201–210.
  • 14. Murashige, S., Aihara, K. & Komuro, M. (1999) Bifurcation and resonance of a mathematical model for non-linear motion of a flooded ship in waves. Journal of Sound and Vibration 220(1), pp.155–170.
  • 15. Neves, M. & Rodriguez, C. (2006) On unstable ship motions resulting from strong non-linear coupling. Ocean Eng. 33, pp. 1853–1883.
  • 16. Ribeiro e Silva, S. & Guedes Soares, C. (2013) Prediction of parametric rolling in waves with a time domain non-linear strip theory model. Ocean Eng. 72, pp. 453–469.
  • 17. Shin, Y.S., Belenky, V.L., Paulling, J.R., Weems, K.M. & Lin, W.M. (2004) Criteria for Parametric Roll of Large Containerships in Longitudinal Seas. ABS Technical Papers.
  • 18. Spyrou, K., Tigkas, I., Scanferla, G., Pallikaropoulos, N. & Themelis, N. (2008) Prediction potential of the parametric rolling behaviour of a post-panamax containership. Ocean Eng. 35, pp. 1235–1244.
  • 19. Umeda, N. (2013) Current status of Second Generation Intact Stability Criteria Development and Some Recent Efforts. Proceedings of the 13th International Ship Stability Workshop, Brest.
  • 20. Wawrzyński, W. & Krata, P. (2016a) Method for ship’s rolling period prediction with regard to non-linearity of GZ curve. Journal of Theoretical and Applied Mechanics 54, 4.
  • 21. Wawrzyński, W. & Krata, P. (2016b) On ship roll resonance frequency. Ocean Eng. 126, pp. 92–114.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-21ff97f4-0bf0-44cc-bad5-267fbcdd9246
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.