PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

μ -Hankel operators on Hilbert spaces

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A class of operators is introduced (μ -Hankel operators, μ is a complex parameter), which generalizes the class of Hankel operators. Criteria for boundedness, compactness, nuclearity, and finite dimensionality are obtained for operators of this class, and for the case |μ| = 1 their description in the Hardy space is given. Integral representations of ^-Hankel operators on the unit disk and on the Semi-Axis are also considered.
Rocznik
Strony
881--898
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
  • F. Skorina Gomel State University Department of Mathematics and Programming Technologies 246019, Sovietskaya, 104, Gomel, Belarus
  • Regional Mathematical Center Southern Federal University Rostov-on-Don, 344090 Russia
  • F. Skorina Gomel State University Department of Mathematics and Programming Technologies 246019, Sovietskaya, 104, Gomel, Belarus
Bibliografia
  • [1] N.I. Akhiezer, I.M. Glazman, Theory of Linear Operators in Hilbert Space, Dover Publications, Inc., New York, 1993.
  • [2] C. Berg, J.P.R. Christensen, P. Ressel, Harmonic Analysis on Semigroups. Theory of Positive Definite and Related Functions, Springer-Verlag, New York, 1984.
  • [3] A. Erdelyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Func¬tions, vol. 1, 2, McGraw-Hill, New York, Toronto, London, 1953.
  • [4] I.C. Gohberg, M.G. Krein, Introduction to the Theory of Linear Nonselfadjoint Operators in Hilbert Space, AMS, Providence, Rhode Island, 1969.
  • [5] M.C. Ho, On the rotational invariance for the essential spectrum of X-Toeplitz operators, J. Math. Anal. Appl. 413 (2014), 557-565.
  • [6] E. Jahnke, F. Emde, F. Lösch, Tables of Higher Functions, McGraw-Hill, New York, 1960.
  • [7] A.R. Mirotin, On the essential spectrum of X-Toeplitz operators over compact Abelian groups, J. Math. Anal. Appl. 424 (2015), 1286-1295.
  • [8] A.R. Mirotin, Compact Hankel operators on compact abelian groups, Algebra and Analysis, 33 (2021), 191-212 [in Russian].
  • [9] A.R. Mirotin, I.S. Kovalyova, The Markov-Stieltjes transform on Hardy and Lebesgue spaces, Integral Transforms Spec. Funct. 37 (2016), 995-1007; Corrigendum to our paper “The Markov-Stieltjes transform on Hardy and Lebesgue spaces” 28 (2017), 421—422.
  • [10] A.R. Mirotin, I.S. Kovalyova, The generalized Markov-Stieltjes operator on Hardy and Lebesgue spaces, Trudy Instituta Matematiki 25 (2017), 39-50 [in Russian].
  • [11] N.K. Nikolski, Operators, Functions, and Systems: an Easy Reading, vol. 1. Hardy, Hankel, and Toeplitz, Mathematical Surveys and Monographs, vol. 92, American Mathe¬matical Society, 2002.
  • [12] N.K. Nikolski, Operators, Functions, and Systems: an Easy Reading, vol. 2: Model Operators and Systems, Mathematical Surveys and Monographs, vol. 93, American Mathematical Society, 2002.
  • [13] V.V. Peller, Hankel Operators and Their Applications, Springer-Verlag, New York, 2003.
  • [14] J. Weidmann, Linear Operators in Hilbert Spaces, Springer-Verlag, New York, 1980.
  • [15] D.R. Yafaev, Hankel and Toeplitz operators: continuous and discrete representations, Opuscula Math. 37 (2017), 189-218.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-21f262ba-e83e-4f04-91f3-a1c989a50b5f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.