PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

A novel approach of voterank-based knowledge graph for improvement of multi-attributes influence nodes on social networks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recently, measuring users and community influences on social media networks play significant roles in science and engineering. To address the problems, many researchers have investigated measuring users with these influences by dealing with huge data sets. However, it is hard to enhance the performances of these studies with multiple attributes together with these influences on social networks. This paper has presented a novel model for measuring users with these influences on a social network. In this model, the suggested algorithm combines Knowledge Graph and the learning techniques based on the vote rank mechanism to reflect user interaction activities on the social network. To validate the proposed method, the proposed method has been tested through homogeneous graph with the building knowledge graph based on user interactions together with influences in realtime. Experimental results of the proposed model using six open public data show that the proposed algorithm is an effectiveness in identifying influential nodes.
Rocznik
Strony
165--180
Opis fizyczny
Bibliogr. 49 poz., rys.
Twórcy
autor
  • School of Information Communication and Technology, Hanoi University of Science and Technology, Hanoi, Vietnam
  • ICT Department, FPT University, Hanoi, Vietnam
  • College of Information Science and Engineering, Ritsumeikan University, Japan
autor
  • College of Information Science and Engineering, Ritsumeikan University, Japan
Bibliografia
  • [1] R. M. C. J. Bond, Fariss, jason j. jones, adam di kramer, cameron marlow, jaime settle, james h. fowler. 2012. a 61-million-person experiment in social influence and political mobilization, Nature 489 295–298.
  • [2] A. Sheikhahmadi, M. A. Nematbakhsh, Identification of multi-spreader users in social networks for viral marketing, Journal of Information Science 43 (3) (2017) 412–423.
  • [3] H. V. Pham, D. N. Tien, Hybrid louvain-clustering model using knowledge graph for improvement of clustering user’s behavior on social networks, in: The International Conference on Intelligent Systems & Networks, Springer, 2021, pp. 126–133.
  • [4] H. P. Van, N. D. Khoa, Applied multivariate regression model for improvement of performance in labor demand forecast, in: B. Unhelker, H. M. Pandey, G. Raj (Eds.), Applications of Artificial Intelligence and Machine Learning, Springer Nature Singapore, Singapore, 2022, pp. 645–654.
  • [5] X. T. Dinh, H. V. Pham, Social network analysis based on combining probabilistic models with graph deep learning, in: Communication and Intelligent Systems, 3rd Edition, Vol. 204, Springer, Singapore, 2021, Ch. 12, pp. 975–986.
  • [6] B. Liu, X. L. Yu, S. Chen, X. Xu, L. Zhu, Blockchain based data integrity service framework for iot data, in: 2017 IEEE International Conference on Web Services (ICWS), IEEE, 2017, pp. 468–475.
  • [7] W.-L. Fan, X.-M. Zhang, S.-W. Mei, S.-W. Huang, Vulnerable transmission line identification considering depth of k-shell decomposition in complex grids, IET Generation, Transmission & Distribution 12 (5) (2018) 1137–1144.
  • [8] Y. Yang, T. Nishikawa, A. E. Motter, Small vulnerable sets determine large network cascades in power grids, Science 358 (6365) (2017) eaan3184.
  • [9] H.-J. Li, H. Li, C. Jia, A novel dynamics combination model reveals the hidden information of community structure, International Journal of Modern Physics C 26 (04) (2015) 1550043.
  • [10] X.-F. Wang, X. Li, G.-R. Chen, Network science: an introduction, Beijing: Higher Education Press 4 (2012) 95–142.
  • [11] H. V. Pham, Q. H. Nguyen, The clustering approach using som and picture fuzzy sets for tracking influenced covid-19 persons, in: N. H. T. Dang, Y.-D. Zhang, J. M. R. S. Tavares, B.-H. Chen (Eds.), Artificial Intelligence in Data and Big Data Processing, Springer International Publishing, Cham, 2022, pp. 531–541.
  • [12] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Complex networks: Structure and dynamics, Physics reports 424 (4-5) (2006) 175–308.
  • [13] S. Kumar, B. Panda, Identifying influential nodes in social networks: Neighborhood coreness based voting approach, Physica A: Statistical Mechanics and its Applications 553 (2020) 124215.
  • 178 Hai Van Pham, Pham Van Duong, Dinh Tuan Tran, Joo-Ho Lee [14] Q. Shang, B. Zhang, H. Li, Y. Deng, Identifying influential nodes: A new method based on network efficiency of edge weight updating, Chaos: An Interdisciplinary Journal of Nonlinear Science 31 (3) (2021) 033120.
  • [15] Pham, N. Van H, T. Quoc H., T. Van P, Phuong, The proposed context matching algorithm and its application for user preferences of tourism in covid19 pandemic, in: International Conference on Innovative Computing and Communications. Lecture Notes in Networks and Systems, Spinger, 2022, pp. 285–293.
  • [16] Y. Yang, X. Wang, Y. Chen, M. Hu, C. Ruan, A novel centrality of influential nodes identification in complex networks, IEEE Access 8 (2020) 58742–58751.
  • [17] Q. Zhang, X. Li, Y. Fan, Y. Du, An sei 3 r information propagation control algorithm with structural hole and high influential infected nodes in social networks, Engineering Applications of Artificial Intelligence 108 (2022) 104573. https://doi.org/10.1016/j.engappai.2021.104573
  • [18] Y. Wang, H. Li, L. Zhang, L. Zhao, W. Li, Identifying influential nodes in social networks: Centripetal centrality and seed exclusion approach, Chaos, Solitons & Fractals 162 (2022) 112513. https://doi.org/10.1016/j.chaos.2022.112513
  • [19] F. Kazemzadeh, A. Asghar Safaei, M. Mirzarezaee, S. Afsharian, H. Kosarirad, https://www.sciencedirect.com/science/article/pii/S0925231223002084 Determination of influential nodes based on the communities’ structure to maximize influence in social networks, Neurocomputing 534 (2023) 18–28.https://doi.org/https://doi.org/10.1016/j.neucom.2023.02.059 https://www.sciencedirect.com/science/article/pii/S0925231223002084
  • [20] A. Zareie, R. Sakellariou, https://www. sciencedirect.com/science/article/pii/S0306437923000157Centrality measures in fuzzy social networks,Information Systems 114 (2023) 102179.https://doi.org/https://doi.org/10.1016/j.is.2023.102179 https://www.sciencedirect.com/science/article/pii/ S0306437923000157
  • [21] J. Zhang, Y. Luo, Degree centrality, betweenness centrality, and closeness centrality in social network, in: 2017 2nd international conference on modelling, simulation and applied mathematics (MSAM2017), Atlantis Press, 2017, pp. 300–303.
  • [22] Y.-H. Eom, D. L. Shepelyansky, Opinion formation driven by pagerank node influence on directed networks, Physica A: Statistical Mechanics and its Applications 436 (2015) 707–715.
  • [23] M. Lei, K. H. Cheong, Node influence ranking in complex networks: A local structure entropy approach, Chaos, Solitons & Fractals 160 (2022) 112136.
  • [24] A. Ullah, B. Wang, J. Sheng, J. Long, N. Khan, Z. Sun, Identification of nodes influence based on global structure model in complex networks, Scientific Reports 11 (1) (2021) 1–11.
  • [25] Z. Li, T. Ren, X. Ma, S. Liu, Y. Zhang, T. Zhou, Identifying influential spreaders by gravity model, Scientific reports 9 (1) (2019) 1–7.
  • [26] A. Zareie, A. Sheikhahmadi, K. Khamforoosh, Influence maximization in social networks based on topsis, Expert Systems with Applications 108 (2018) 96–107.
  • [27] J.-X. Zhang, D.-B. Chen, Q. Dong, Z.-D. Zhao, Identifying a set of influential spreaders in complex networks, Scientific reports 6 (1) (2016) 1–10.
  • [28] C. Guo, L. Yang, X. Chen, D. Chen, H. Gao, J. Ma, Influential nodes identification in complex networks via information entropy, Entropy 22 (2) (2020) 242.
  • [29] P. Liu, L. Li, S. Fang, Y. Yao, Identifying influential nodes in social networks: A voting approach, Chaos, Solitons & Fractals 152 (2021) 111309.
  • [30] S. Kumar, D. Lohia, D. Pratap, A. Krishna, B. Panda, Mder: modified degree with exclusion ratio algorithm for influence maximisation in social networks, Computing 104 (2) (2022) 359–382.
  • [31] S. Samanta, V. K. Dubey, B. Sarkar, Measure of influences in social networks, Applied Soft Computing 99 (2021) 106858.
  • [32] X.-H. Yang, Z. Xiong, F. Ma, X. Chen, Z. Ruan, P. Jiang, X. Xu, Identifying influential spreaders in complex networks based on network embedding and node local centrality, Physica A: Statistical Mechanics and its Applications 573 (2021) 125971.
  • [33] J. Zhao, T. Wen, H. Jahanshahi, K. H. Cheong, The random walk-based gravity model to identify influential nodes in complex networks, Information Sciences 609 (2022) 1706–1720.
  • [34] H. V. Pham, D. H. Thanh, P. Moore, Hierarchical pooling in graph neural networks to enhance classification performance in large datasets, Sensors 21 (18) (2021) 6070.
  • [35] Q. M. Tran, H. D. Nguyen, T. Huynh, K. V. Nguyen, S. N. Hoang, V. T. Pham, Measuring the influence and amplification of users on social network with unsupervised behaviors learning and efficient interaction-based knowledge graph, Journal of Combinatorial Optimization (2021) 1–27.
  • [36] P. Van Duong, X. T. Dinh, L. H. Son, P. Van Hai, Enhancement of gravity centrality measure based n local clustering method by identifying influential nodes in social networks, in: S.-H. Wang, Y.-D. Zhang (Eds.), Multimedia Technology and Enhanced Learning, Springer Nature Switzerland, Cham, 2022, pp. 614–627.
  • [37] P. Van Duong, T. M. Dang, L. H. Son, P. Van Hai, Enhancement of voting scores with multiple attributes based on voterank++ to identify influential nodes in social networks, in: A. L. Pinto, R. Arencibia-Jorge (Eds.), Data and Information in Online Environments, Springer Nature Switzerland, Cham, 2022, pp. 242–257.
  • [38] L. T. H. Lan, T. M. Tuan, T. T. Ngan, N. L. Giang, V. T. N. Ngoc, P. Van Hai, et al., A new complex fuzzy inference system with fuzzy knowledge graph and extensions in decision making, Ieee Access 8 (2020) 164899–164921.
  • [39] C. K. Long, P. Van Hai, T. M. Tuan, L. T. H. Lan, P. M. Chuan, L. H. Son, A novel fuzzy knowledge graph pairs approach in decision making, Multimedia Tools and Applications (2022) 1–30.
  • [40] D. N. Tien, H. P. Van, Graph neural network combined knowledge graph for recommendation system, in: International Conference on Computational Data and Social Networks, Springer, 2020, pp. 59–70.
  • [41] S. Kumar, A. Panda, Identifying influential nodes in weighted complex networks using an improved wvoterank approach, Applied Intelligence 52 (2) (2022) 1838–1852.
  • [42] C. Alger, K. Todd, The sir model of disease spread (2015).
  • [43] H. Ahmadi Beni, A. Bouyer, Identifying influential nodes using a shell-based ranking and filtering method in social networks, Big Data 9 (3) (2021) 219–232.
  • [44] M. Bahutair, Z. Al Aghbari, I. Kamel, Noderank: Finding influential nodes in social networks based on interests, The Journal of Supercomputing 78 (2) (2022) 2098–2124.
  • [45] P. Gleiser, L. Danon, Advances in compl, Sys 6 (2003) 565–573.
  • [46] R. Guimera, L. Danon, A. Diaz-Guilera, F. Giralt, A. Arenas, Self-similar community structure in a network of human interactions, Physical review E 68 (6) (2003) 065103.
  • [47] E. Cho, S. A. Myers, J. Leskovec, Friendship and mobility: user movement in location-based social networks, in: Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, 2011, pp. 1082–1090.
  • [48] J. Leskovec, J. Kleinberg, C. Faloutsos, Graphs over time: Densification and shrinking diameters, arXiv preprint physics/0603229 (2008).
  • [49] B. Viswanath, A. Mislove, M. Cha, K. P. Gummadi, On the evolution of user interaction in facebook, in: Proceedings of the 2nd ACM workshop on Online social networks, 2009, pp. 37–42.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-21f1aa47-60d3-4357-a0be-abc19ebca34e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.