Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Behaviour of Long-Lasting Stress Relaxation of Various Types of Yarns

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
The main goal of this researcher is estimating of the possibility of long-lasting (even until 200,000 s) stress relaxation by empirical investigation, which was performed for a few thousands of seconds. The empirical investigations of longlasting stress relaxation of different types of yarns (multifilament polyester, cotton and woollen) at different levels of elongation, i.e. at 3%, 5%, 7% and 10%, were carried out. The method of long-lasting relaxation behaviour prediction by the break-point of relaxation rate as well as the linear dependence of second part of relaxation were used. It was found that the behaviour of relaxation can be described using time logarithmic scale by two straight lines, and the value of stress relaxation in long time period could be estimated by the second line. The break-point of relaxation rate of all kinds of yarns occurs in the area of 100-200 s after relaxations started. The obtained results showed that the place of relaxation break-point depends on the level of elongation but does not depend on the type of yarns.
Opis fizyczny
Bibliogr. 32 poz.
  • Department of Materials Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu str. 56, LT-51424 Kaunas, Lithuania
  • Department of Materials Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Studentu str. 56, LT-51424 Kaunas, Lithuania
  • [1] Morton, W. E., Hearle, J. W S. (2008). Physical properties of textile fibres. 4th ed. Cambridge: Woodhead.
  • [2] Milašius, R., Laureckiene, G. (2014). Prediction of Longlasting Relaxation Properties of Polyester Yarns and Fabrics. FIBRES & TEXTILES in Eastern Europe, 6(108), 97-100.
  • [3] Baszczyński, K. (2015). Effect of Repeated Loading on Textile Rope and Webbing Characteristics in Personal Equipment Protecting Against Falls from a Height. FIBRES & TEXTILES in Eastern Europe, 4(112), 110-118.
  • [4] Baltussen, J. J. M., Northolt, M. G. (2001). The viscoelastic extension of polymer fibres: creep behavior. Polymer, 42, 3835-3846.
  • [5] Hezavehi, E., Azadiyan, M., Zolgharnein, P. (2013). Investigation and Modelling of Stress Relaxation on Cylindrical Shell Woven Fabrics: Effect of Experimental Speed. FIBRES & TEXTILES in Eastern Europe, 6(102), 64-73.
  • [6] Xia, N. N., Rong, M. Z., Zhang, M. Q., et al. (2016). Stress intensification - an abnormal phenomenon observed during stress relaxation of dynamic coordination polymer. eXPRESS Polymer Letters; 10(9), 742-749.
  • [7] Vangheluwe, L. (1993). Relaxation and inverse relaxation of yarns after dynamic loading. Textile Research Journal, 63(9), 552-556.
  • [8] Vitkauskas, A. (1997). Influence of alternating rate of extension on stress relaxation in textile yarns. Material Science (Medžiagotyra), 1(4), 52-57.
  • [9] Kothari, V. K., Rajkhowa, R., Gupta, V. B. (2001). Stress relaxation and inverse stress relaxation in silk fibres. Journal of Applied Polymer Science, 82, 1147-1154.
  • [10] Nachane, R. P., Sundaram, V. (1995). Analysis of Relaxation Phenomena in Textile Fibres Part I: Stress Relaxation. The Journal of the Textile institute, 86(1), 10-19.
  • [11] Manich, A. M., Ussman, M. H., Barella, A. (1999). Viscoelastic Behavior of Polypropylene. Textile Research Journal, 69(5), 325-330.
  • [12] Manich, A. M., Miguel, R., Lucas, J., et al. (2011). Texturing, stretching and relaxation behaviour of polylactide multifilament yarns. Textile Research Journal, 81(17), 1788-1795.
  • [13] Meredith, R. (1954). Relaxation of stress in stretched cellulose fibres. The Journal of the Textile institute, 45(6), T438-T461.
  • [14] Meredith, R., Hsu, B. S. (1962). Dynamic bending properties of fibers: Effect of temperature on nylon 66, terylene, orlon, and viscose rayon. Journal of Polymer Science, 61(172), 253-270.
  • [15] Suhara, F., Kutty, S. K. N., Nando, G. B. (1998). Stress Relaxation of Polyester Fiber-Polyurethane Elastomer Composite with Different Interfacial Bonding Agents. Journal of Elastomers and Plastics, 30(2), 103-117.
  • [16] Šajjn, D., Geršak, J., Flajs, R. (2006). Prediction of stress relaxation of fabrics with increased elasticity. Textile Research Journal, 76(10), 742-750.
  • [17] Geršak, J., Šajn, D., Bukosek, V. (2005). A study of the relaxation phenomena in the fabrics containing elastane yarns. International Journal of Clothing Science and Technology, 17(3/4), 188-199.
  • [18] Van Miltenburg, J. G. M. (1991). Stress Relaxation and Tensile Modulus of Polymeric Fibers. Textile Research Journal, 61(6), 363-369.
  • [19] Abromavičiūtė, J., Mikučionienė, D., Čiukas, R. (2011). Static Water Absorption of Knits from Natural and Textured Yarns. FIBRES & TEXTILES in Eastern Europe, 3(86), 60-63.
  • [20] Mikučionienė, D., Arbataitis, E. (2013). Comparative Analysis of the Influence of Bamboo and Other Cellulose Fibres on Selected Structural Parameters and Physical Properties of Knitted Fabrics. FIBRES & TEXTILES in Eastern Europe, 3(99), 76-80.
  • [21] Malik, S. A., Farooqc, A., Gerekeb, T. et al. (2016). Prediction of Blended Yarn Evenness and Tensile Properties by Using Artificial Neural Network and Multiple Linear Regression. Autex Research Journal, 16 (2), 43-50.
  • [22] Munakata, H. (1964). The Stress Relaxation and Set of Wool Fibers with Particular Reference to Their Structure and Mechanical Properties. Textile Research Journal, 34(2), 97-109.
  • [23] Kubu, E. T., Frei, F., Montgomery, D. J. (1954). The Stress Relaxation of Fibrous Materials III. Stress Relaxation of Wool Keratin in Water and in Salt Solutions. Textile Research Journal, 24(7), 659-662.
  • [24] Chapman, B. M. (1973). Bending stress relaxation and recovery of wool, nylon 66, and terylene fibers. Journal of Applied Polymer Science, 17(6), 1693-1713.
  • [25] Bandyopadhyay, S., Ghosh, A., Ali, S. Y. (2011). Tensile Fatigue, Stress Relaxation, and Creep Behaviors of Worsted Core Spun Yarns. Journal of Applied Polymer Science, 121, 2123-2126.
  • [26] Inoue, M., Niwa, M. (1997). Tensile and Tensile Stress Relaxation Properties of Wool/Cotton Plied Yarns. Textile Research Journal, 67(5), 378-385.
  • [27] Zhang, J. T., Zhang, M., Li, S. X., et al. (2016). Residual stresses created during curing of a polymer matrix composite using a viscoelastic model. Composites Science and Technology, 130, 20-27.
  • [28] Hashemi, N., Asayesh, A., Jeddi, A. A. A., et al. (2016). The influence of two bar warp-knitted structure on the fabric tensile stress relaxation Part I: (reverse locknit, sharkskin, queens’ cord). The Journal of the Textile Institute, 107(4), 512-524.
  • [29] Ardakani, T., Asayesh, A., Jeddi, A. A. A. (2016). The influence of two bar warp-knitted structure on the fabric tensile stress relaxation Part II: (locknit, satin, loop raised). The Journal of the Textile Institute, 107(11), 1357-1368.
  • [30] Misak, H. E., Sabelkin, V., Miller, L., et al. (2013). Creep and Inverse Stress Relaxation Behaviors of Carbon Nanotube Yarns. Journal of Nanoscience and Nanotechnology, 13, 1-9.
  • [31] Babay, A., Helali, H., Msahli, S. (2014). Study of the mechanical behaviour of the elastic-core-spun yarns. The Journal of the Textile Institute, 105(7), 701-710.
  • [32] Laureckiene, G., Milašius, R. (2016). Influence of the Straining Level on the Long-Lasting Relaxation Behaviour of Polyester Yarns. FIBRES & TEXTILES in Eastern Europe, 1(115), 73-77.
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.