PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Pro-ecological energy solutions which minimize the use of fossil fuels in the roofed facilities

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Proekologiczne rozwiązania energetyczne, minimalizujące wykorzystanie paliw kopalnych w obiektach pod osłonami
Języki publikacji
EN
Abstrakty
EN
The paper, based on the materials of the Main Statistical Office, presents a present state of use of renewable energy sources in the Polish power industry. Moreover, based on the available data, the amount of energy used for roofed production was estimated (heat, electric energy). Additionally, the amount of emission to atmosphere of hazardous substances (sulphur oxides, lead oxides, carbon dioxide and carbon oxide, dust and benzo(a) piren) was determined. Based on the available literature, technical solutions, which are analysed in various scientific centres, which aim at decrease of fuel consumption, were presented. A detailed analysis focused on the possibility of substituting fossil fuel with another heat source, effectiveness of energy use, increase of insulation ability of the facility roof and modification of greenhouses structures. From among the available energy sources, problems and its possible use in horticultural production were presented. The following energy sources were analysed: geothermal energy, sun and wind energy, biomass, heat pump; co-generative system (triple co-generative). Also barriers and possibilities of use of own boiler house and heat from central heating grid as energy source were analysed.
PL
W pracy, w oparciu o materiały GUS, przedstawiono aktualny stan wykorzystania odnawialnych źródeł energii w polskiej energetyce. Opierając się również na ogólnodostępnych danych, oszacowano ilość energii wykorzystanej na potrzeby produkcji pod osłonami (ciepło, energia elektryczna). Określono także ilość emisji do atmosfery substancji szkodliwych (tlenki siarki, tlenki ołowiu, dwutlenek i tlenek węgla, pył oraz benzo(a)piren). Na bazie dostępnej literatury przedstawiono rozwiązania techniczne analizowane w różnych ośrodkach naukowych, mające na celu zmniejszenie zużycia paliw. Szczegółową analizę skoncentrowano wokół: możliwości zastępowanie paliwa kopalnego innym źródłem ciepła, efektywności wykorzystania energii, zwiększenia izolacyjności osłony obiektu oraz modyfikacji konstrukcji obiektów szklarniowych. Spośród dostępnych źródeł energii odnawialnej przedstawiono problemy i potencjalne możliwości jej stosowania w produkcji ogrodniczej. Analizie poddano następujące źródła energii: energię geotermalną, energię słońca i wiatru, biomasę, pompę ciepła, układ kogeneracyjny (trójkogeneracjny). Analizie poddano również bariery i możliwości w wykorzystaniu jako źródło energii kotłownię własną oraz ciepło z sieci centralnego ogrzewania.
Rocznik
Strony
113--125
Opis fizyczny
Bibliogr. 64 poz., ta., wykr.
Twórcy
autor
  • Institute of Agricultural Engineering and Informatics, University of Agriculture in Krakow
Bibliografia
  • Abdel-Ghany, A.M., Ishigami, Y., Goto, E., Kozai, T. (2006). A Method for measuring Greenhouse Cover Temperature using a Thermocouple. Biosystems Engineering, Vol. 95(1), 99-109.
  • Attar, I., Farhat, A. (2015). Efficiency evaluation of a solar water heating system applied to the greenhouse climate. Solar Energy, Vol 119, 212-224.
  • Aye, L., Fuller, R.J., Canal, A. (2010) Evaluation of a heat pump system for greenhouse heating. International Journal of Thermal Sciences, VOL 49(1), 202-208.
  • Bibbiani, C., Fantozzi, F., Gargari, C., Campiotti, C.A., Schettini, E., Vox, G. (2016). Wood Biomass as Sustainable Energy for Greenhouses Heating in Italy. Agriculture and Agricultural Science Procedia, Vol. 8, 637-645.
  • Bot, G.P.A., van de Braak, N., Challa, H., Hemming, S., Rieswijk, T.H., van Straten, G., Verlodt, I. (2005). The solar greenhouse: state of the art in energy saving and sustainable energy supply. Acta Horticulturae, 691, 501-508.
  • Campiotti, C.A., Morosinotto, G., Puglisi, G., Schettini, C., Vox, G. (2016 ). Performance evaluation of a solar cooling plant applied for greenhouse thermal control. Agriculture and Agricultural Science Procedia, Vol. 8, 664-669.
  • Campen, J. B., Bot, G. P. A. (2002). Dehumidification in Greenhouses by Condensation on Finned Pipes. Biosystems Engineering, 82(2), 177-185.
  • Campen, J. B., Bot, G. P. A., de Zwart, H.F. (2003). Dehumidification of Greenhouses at Northern Latitudes. Biosystems Engineering, 86(4), 487-493.
  • Campen, J.B., Kempkes, F.L.K., Bot, G.P.A. (2009). Mechanically controlled moisture removal from greenhouses. Biosystems Engineering, 102, 424-432.
  • Cavins, T.J., Dole, J.M., Stamback, V. (2000). Unheated and Minimally Heated Winter Greenhouse Production of Specialty Cut Flowers. Hort Technology, 10(4), 793-799.
  • Chau, J., Sowlati, T., Sokhansanj, S., Preto, F., Melin, S., Bi, X. (2009). Techno-economic analysis of wood biomass boilers for the greenhouse industry. Applied Energy, Vol. 86(3), 364-371.
  • Critten, D.L., Bailey, B.J (2002). A review of greenhouse engineering developments during the 1990s. Agricultural and Forest Meteorology, Vol. 112(1), 1-22.
  • Cohen, J.E. (2002). World population in 2050: assessing the projections.
  • Czynczyło-Mysza, I., Dubert, F., Marcińska, I., Kacińska, I. (2007). Influence of light emitting diodes (LED) on Vicia faba callus growth and differentiation. Zeszyty Problemowe Postępów Nauk Rolniczych, 523, 69-82.
  • Dehbi, A., Bouaza, A., Hamou, A., Youssef, B., Saiter, J.M. (2010). Artificial ageing of tri-layer polyethylene film used as greenhouse cover under the effect of the temperature and the UV-A simultaneously. Materials & Design, Vol. 31(2), 864-869.
  • Fabrizio, E. (2012). Energy reduction measures in agricultural greenhouses heating: Envelope, systems and solar energy collection. Energy and Buildings, Vol. 53, 57-63.
  • Ghosal, M.K., Tiwari, G.N., Srivastava, N.S.L. (2004). Thermal modeling of a greenhouse with an integrated earth to air heat exchanger: an experimental validation. Energy and Buildings, 36, 219-227.
  • Grabarczyk, S. (2010). Badania zmienności zużycia ciepła w szklarniach z osłonami energooszczędnymi. Czasopismo Techniczne, 4(107), 67-74.
  • Han, J., Guo, H., Brad, R., Gao, Z., Waterer, D. (2015). Dehumidification requirement for a greenhouse located in a cold region. Applied Engineering in Agriculture Vol. 31(2), 291-300.
  • Hare, J.G., Norton, B., Probert, S.D. (1984). Design of greenhouses: Thermal aspects Applied Energy, Vol. 18(1), 49-82.
  • Heo J., Lee C., Chakrabarty D., Peak K., (2002). Growth responses of mariagold and salvia bedding plants as affected by monochromic or mixture radiation provided by a Light-Emitting-Diode (LED). Plant Growth Regulation, 38, 225-230.
  • Hepbasli, A. (2011). A comparative investigation of various greenhouse heating options using exergy analysis method. Applied Energy, Vol. 88(12), 4411-4423.
  • Jabłońska, L., Olewnicki (2014). Zmiany w powierzchni upraw ogrodniczych pod osłonami w Polsce w pierwszej dekadzie XXI w. Zeszyty Naukowe Szkoły Głównej Gospodarstwa Wiejskiego. Problemy Rolnictwa Światowego, Vol. 11(26), 89-97.
  • Joudi, K.A., Farhan, A.A. (2014). Greenhouse heating by solar air heaters on the roof. Renewable Energy, 72, 406-414.
  • Kempes, F.L.K., van de Braak, N.J. (2000). Heating system position and vertical microclimate distribution in chrysanthemum greenhouse. Agricultural and Forest Meteorology, Vol. 104(2), 133-142.
  • Kim, S.J., Hahn, E.J., Heo, J.W., Paek, K.Y. (2004). Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Scientia Horticulturae, 101, 143-151.
  • Klamkowski, K., Treder, W., Wójcik, K., Puternicki, A., Lisak, E. (2014). Influence of supplementary lighting on growth and photosynthetic activity of tomato transplants. Infrastructure and Ecology of Rural Areas, IV/3, 1377-1385.
  • Kurpaska, S. (2003). Modyfikacja wyposażenia technicznego tunelu foliowego w aspekcie jego zapotrzebowania na ciepło. Problemy Inżynierii Rolniczej, 1, 39-46.
  • Kurpaska, S. (2007). Szklarnie i tunele foliowe: inżynieria i procesy. Poznań, Wydawnictwo PWRiL, ISBN:978-83-09-01024-1.
  • Kurpaska, S. (2008). Wymiary geometryczne oraz rodzaj pokrycia a zapotrzebowanie ciepła w szklarni. Inżynieria Rolnicza, 6(104), 89-96.
  • Kurpaska, S., Latała H., Łapczyńska-Kordon B., Mudryk K. (2012). Efficiency of the heat pump cooperating with various heat sources in monovalent and bivalent systems. TEKA. Commission of Motorization and Energetics in Agricultures, Vol 12(1), 109-113.
  • Kurpaska, S., Latała H. (2012a). Energy efficiency of ground heat exchangers cooperating with compressor heat pump. TEKA. Commission of Motorization and Energetics in Agricultures, Vol 12(1), 103-107.
  • Kurpaska, S., Latała H. (2012b). Analysis of the influence of variable insulating power of a storing tank on energy effects in the conversion system of solar radiation. TEKA. Commission of Motorization and Energetics in Agricultures, Vol 12(2), 293-301.
  • Kurpaska, Sł., Latała, H., Sporysz, M., Sikora, J., Mudryk, K., Konopacki, P., Hołownicki, R. (2015a). Some Aspects of the Analysis during Heating Plastic Tunnel by the Use of Heat from Stone Accumulator. Journal of Environmental Science and Engineering, 4, 154-160.
  • Kurpaska, S., Latała, H., Baran, D., Konopacki, P., Hołownicki, R. (2015b). Heat storing effectiveness with the use of a recuperator in the liquid type battery. Agricultural Engineering, 3(155), 47-57.
  • Laazar, M., Bouadila, S., Kooli, S., Farhat, A. (2015). Comparative study of conventional and solar heating systems under tunnel Tunisian greenhouses: Thermal performance and economic analysis. Solar Energy, Vol. 120, 620-635.
  • Liao, Z., Dexter, A. L. (2004): The potential for energy saving in heating systems through improving boiler controls. Energy and Buildings, 36, 261-271.
  • Ooster, van’t A., Henten, van E.J., Janssen, E.G.O.N., Bot, G.P.A., Dekker, E. (2008) Development of Concepts for a Zero-Fossil-Energy Greenhouse. Acta Horticulturae, 801, 725-732.
  • Ozenger, O., Hepbasli, A. (2005). Experimental performance analysis of a solar assisted groundsource heat pump greenhouse heating system. Energy and Buildings, Vol. 37(1), 101-110.
  • Ozenger, L., Ozenger, O. (2010). Energetic performance test of an underground air tunnel system for greenhouse heating. Energy, Vol. 35(10), 4079-4085.
  • Pawlak, J. (2012). Efektywność nakładów energii w rolnictwie polskim. Roczniki Nauk Rolniczych, Seria G, Tom 99, Z. 1, 121-128.
  • Pinho, P., Lukalla, R., Sarkka, L., Tetri, E., Tahvonen, R., Halonen, L. (2007). Evaluation of lettuce growth under multi-spectral-component supplemental solid state lighting in greenhouse environment. International Review of Electrical Engineering, Vol. 2(6), 854-860.
  • Rooder, M., Whittaker, C., Thornley, P. (2015). How certain are greenhouse gas reductions from bioenergy? Life cycle assessment and uncertainty analysis of wood pellet-to-electricity supply chains from forest residues. Biomass and Bioenergy, Vol. 79, 50-63.
  • Russo, G., Antifanis, A.S., Verdiani, G., Mugnozza, G.S. (2014). Environmental analysis of geothermal heat pump and LPG greenhouse heating systems. Biosystems Engineering, Vol. 127, 11-23.
  • Skorek, J., Kalina, J. (2005). Gazowe układy kogeneracyjne, Warszawa, Wyd. Naukowo-Techniczne, ISBN:83-204-3103-4.
  • Sonneveld, P.J., Swinkels, G.L.A.M., Campen, J., Tuijl, van B.A.J., Janssen H.J.J., Bot, G.P.A. (2010). Performance results of a solar greenhouse combining electrical and thermal energy production. Biosystems Engineering, 106(1), 48-57.
  • Tantau, H-J., Lange, D. (2003). Greenhouse climate control: an approach for integrated pest management. Computers and Electronics in Agriculture, Vol. 40(1-3), 141-152.
  • Teitel, M., Shklyar, A., Segal, I., Barak, M. (1996a). A Comparison between Pipe and Air Heating Methods for Greenhouses. Journal of Agricultural Engineering Research, Vol.72(3), 259-279.
  • Teitel, M., Shklyar, A., Segal, I., Barak, M. (1996b). Effects of Nonsteady Hot-water Greenhouse Heating on Heat Transfer and Microclimate. Journal of Agricultural Engineering Research, Vol. 65(4), 297-304.
  • Teitel, M., Barak, M., Antler, A. (2009). Effect of cyclic heating and a thermal screen on the nocturnal heat loss and microclimate of a greenhouse. Biosystems Engineering, 102, 162-170.
  • Thornley, P., Gilbert, P., Shackley, S., Hammond, J. (2015). Maximizing the greenhouse gas reductions from biomass: The role of life cycle assessment. Biomass and Bioenergy, Vol. 81, 35-43.
  • Trouwborst, G., Oosterkamp, J., Hogewoning, S.W., Harbinson, J., van Ieperen, W. (2010). The responses of light interception, photosynthesis and fruit yield of cucumber to LED lighting within the canopy. Physiologia Plantarum, 138(3), 289-300.
  • Hao, X., Borhan, A.S., Zheng, J. (2006). Influence of Heating Pipe Placement on Microclimate of Greenhouses with Raised-Trough Tomato. Paper no. 064130, ASAE Annual Meeting.
  • Zhang, L., Xu P., Mao, J., Tang, X., Li, Z., Shi, J. (2015). A low cost seasonal solar soil heat storage system for greenhouse heating: Design and pilot study. Applied Energy, Vol. 156, 213-222.
  • Zhang, Y., Gauthier, L., Halleux, de D., Dansereau, B., Gosselin, A. (1996). Effect of covering materials on energy consumption and greenhouse microclimate. Agricultural and Forest Meteorology, 82(1-4), 227-244.
  • Zwart, de H.F. (1996). Analyzing energy saving options in greenhouse cultivation using simulation model. Ph.D. dissertation, Agricultural University of Wageningen.
  • Legal acts
  • Journal of Laws of 2005, item 1875 Resolution of the Council of /ministers of 12 October 2015 on the charges for the use of environment. 2009/28/EC
  • Directive of the European Parliament and the Council of 23 April 2009 on promotion of renewable energy sources amending and repealing directives 2001/77/EC and 2003/30/EC.
  • Web pages
  • Prognoza (on-line 2016). GUS. Prognoza ludności polski na lata 2014 2050. Obtained from: www.stat.gov.pl.
  • Gospodarka(on-line 2016) GUS. Gospodarka paliwowa i energetyczna w latach 2013 i 2014r. Obtained from: www.stat.gov.pl Kobize (on-line 2016)
  • Krajowa baza o emisji gazów cieplarnianych i innych substancji. Obtained from: http://pl.wikipedia.org/wiki/Tarcie
  • Ludvigsvensson (on-line-2016) Dane dotyczące ekranów ciepła marki Svensson. Obtained from: www.ludvigsvensson.com
  • Ogrodinfo (on-line-2016) Portal ogrodniczy. Obtained from: www.ogrodinfo.pl
  • Sppiopo (on-line-2016), Stowarzyszenie producentów pomidorów i ogórków pod osłonami. Obtained from: www.sppiopo.pl
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-21eb5375-a848-412a-94fe-1d632840cbf2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.