PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The effects of anisotropy of marine magnetic anomalies on the Curie point depth estimates from spectral analysis

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Azimuthally averaged power spectra are widely used in the Curie point depth (CPD) estimation with the implicit assumption that the magnetization distribution is random and uncorrelated. However, the marine magnetic anomalies are caused by bands of normal and reverse magnetization and show obvious trends. To investigate the effects of the anisotropy of marine magnetic anomalies on the CPD estimates, we develop 3D fractal striped magnetization models to produce lineated marine magnetic anomalies for the first time. We analyze the spectra anisotropy of the lineated magnetic anomalies of the synthetic fractal striped magnetization models and investigate its effects on the CPD estimates. The synthetic models and actual data show that the spectra of the lineated marine magnetic anomalies are directionally anisotropic. The amplitude response is strong and the slope of the logarithmic spectrum is large in a direction perpendicular to the stripes of magnetic anomalies, whereas the amplitude response is weak and the slope of the logarithmic spectrum is small in a direction parallel to the stripes of magnetic anomalies. The depth estimates in the perpendicular direction are close to the actual values, whereas the depths estimates in the parallel direction are significantly lower than the actual values. The actual marine magnetic anomalies of the South China Sea exhibit an anisotropic power spectrum that is consistent with the spectral anisotropy of magnetic anomalies of the synthetic fractal striped magnetization models.
Czasopismo
Rocznik
Strony
1019--1030
Opis fizyczny
Bibliogr. 47 poz.
Twórcy
autor
  • State Key Laboratory of Marine Geology Tongji University Shanghai China
autor
  • School of Resource and Earth Science China University of Mining and Technology Xuzhou China
Bibliografia
  • 1. Akbar S, Fathianpour N (2016) Improving the Curie depth estimation through optimizing the spectral block dimensions of the aeromagnetic data in the Sabalan geothermal field. J Appl Geophys 135:281–287. https://doi.org/10.1016/j.jappgeo.2016.10.018
  • 2. Bansal AR, Gabriel G, Dimri VP et al (2011) Estimation of depth to the bottom of magnetic sources by a modified centroid method for fractal distribution of sources: an application to aeromagnetic data in Germany. Geophysics 76(3):L11–L22. https://doi.org/10.1190/1.3560017
  • 3. Bansal AR, Anand SP, Rajaram M et al (2013) Depth to the bottom of magnetic sources (DBMS) from aeromagnetic data of Central India using modified centroid method for fractal distribution of sources. Tectonophysics 603(5):155–161. https://doi.org/10.1016/j.tecto.2013.05.024
  • 4. Bhattacharyya BK, Leu LK (1975) Analysis of magnetic anomalies over Yellowstone National Park: mapping of Curie point isothermal surface for geothermal reconnaissance. J Geophys Res 80(32):4461–4465. https://doi.org/10.1029/JB080i032p04461
  • 5. Blakely RJ (1976) An age-dependent, two-layer model for marine magnetic anomalies. Geophy Pac Ocean Basin Marg. https://doi.org/10.1029/GM019p0227
  • 6. Blakely RJ (1988) Curie temperature isothermal analysis and tectonic implications of aeromagnetic data from Nevada. J Geophys Res Solid Earth 93(B10):11817–11832. https://doi.org/10.1029/JB093iB10p11817
  • 7. Blakely RJ (1995) Potential theory in gravity and magnetic applications. Cambridge University Press, Cambridge
  • 8. Bouligand C, Glen JMG, Blakely RJ (2009) Mapping Curie temperature depth in the western United States with a fractal model for crustal magnetization. J Geophys Res Solid Earth 114(B11):B11104. https://doi.org/10.1029/2009JB006494
  • 9. Cande SC, Kent DV (1976) Constraints imposed by the shape of marine magnetic anomalies on the magnetic source. J Geophys Res 81(23):4157–4162. https://doi.org/10.1029/JB081i023p04157
  • 10. Cande SC, Kent DV (1995) Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic. J Geophys Res Solid Earth 100(B4):6093–6095. https://doi.org/10.1029/94JB03098
  • 11. Cann JR (1974) A model for oceanic crystal structure developed. Geophys J Int 39(1):169–187. https://doi.org/10.1111/j.1365-246X.1974.tb05446.x
  • 12. Connard G, Couch R, Gemperle M (1983) Analysis of aeromagnetic measurements from the Cascade Range in central Oregon. Geophysics 48:376–390. https://doi.org/10.1190/1.1441476
  • 13. Dyment J, Arkani-Hamed J, Ghods A (1997) Contribution of serpentinized ultramafics to marine magnetic anomalies at slow and intermediate spreading centres: insights from the shape of the anomalies. Geophys J R Astron Soc 129(3):691–701. https://doi.org/10.1111/j.1365-246x.1997.tb04504.x
  • 14. Fedi M, Desantis A, Quarta T (1997) Inherent power-law behavior of magnetic field power spectra from a spector and grant ensemble. Geophysics 62(4):1143–1150. https://doi.org/10.1190/1.1444215CrossRefGoogle Scholar
  • 15. Ferré EC, Friedman SA, Martín-Hernández F et al (2014) Eight good reasons why the uppermost mantle could be magnetic. Tectonophysics 624:3–14. https://doi.org/10.1016/j.tecto.2014.01.004
  • 16. Gailler LS, Lénat JF, Blakely RJ (2016) Depth to Curie temperature or bottom of the magnetic sources in the volcanic zone of la Réunion hot spot. J Volcanol Geotherm Res 324:169–178. https://doi.org/10.1016/j.jvolgeores.2016.06.005
  • 17. Gee JS, Kent DV (2007) Source of oceanic magnetic anomalies and the geomagnetic polarity timescale. In: Kono M (ed) Geomagnetism, vol 5, Treatise on geophysics. Elsevier, Amsterdam, pp 455–507. https://doi.org/10.1016/B978-044452748-6/00097-3
  • 18. Gettings ME (2005) Multifractal magnetic susceptibility distribution models of hydrothermally altered rocks in the Needle Creek Igneous Center of the Absaroka Mountains,Wyoming. Nonlinear Process Geophys 12(5):587–601. https://doi.org/10.5194/npg-12-587-2005
  • 19. Haggerty SE (1978) Mineralogical contraints on Curie isotherms in deep crustal magnetic anomalies. Geophys Res Lett 5(2):105–108. https://doi.org/10.1029/GL005i002p00105
  • 20. Harrison CGA (1976) Magnetization of the oceanic crust. Geophys J Roy Astron Soc 47(2):257–283. https://doi.org/10.1029/RG017i002p00215
  • 21. Harrison CGA (1987) Marine magnetic anomalies—the origin of the stripes. Annu Rev Earth Planet Sci 15(1):505–543. https://doi.org/10.1146/annurev.ea.15.050187.002445
  • 22. Hsieh HH, Chen CH, Lin PY et al (2014) Curie point depth from spectral analysis of magnetic data in Taiwan. J Asian Earth Sci 90(4):26–33. https://doi.org/10.1016/j.jseaes.2014.04.007CrossRefGoogle Scholar
  • 23. Khojamli A, Ardejani FD, Moradzadeh A et al (2016) Estimation of Curie point depths and heat flow from Ardebil province, Iran, using aeromagnetic data. Arab J Geosci 9:383. https://doi.org/10.1007/s12517-016-2400-3
  • 24. Kidd RGW (1977) The nature and shape of the sources of marine magnetic anomalies. Earth Planet Lett 33(3):310–320. https://doi.org/10.1016/0012-821X(77)90083-8
  • 25. Li CF (2011) An integrated geodynamic model of the Nankai subduction zone and neighboring regions from geophysical inversion and modeling. J Geodyn 51(1):64–80. https://doi.org/10.1016/j.jog.2010.08.003
  • 26. Li CF, Wang J, Lin J et al (2013) Thermal evolution of the North Atlantic lithosphere: new constraints from magnetic anomaly inversion with a fractal magnetization model. Geochem Geophys Geosyst 14(12):5078–5105. https://doi.org/10.1002/2013GC004896
  • 27. Li CF, Lu Y, Wang J (2017) A global reference model of Curie-point depths based on EMAG2. Sci Rep 7:45129. https://doi.org/10.1038/srep45129
  • 28. Mandelbrot BB (1983) The fractal geometry of nature. W.H. Freeman, New York, p 1983
  • 29. Manea M, Manea VC (2011) Curie point depth estimates and correlation with subduction in Mexico. Pure Appl Geophys 168(8–9):1489–1499. https://doi.org/10.1007/s00024-010-0238-2
  • 30. Maus S, Dimri VP (1994) Scaling properties of potential fields due to scaling sources. Geophys Res Lett 21(10):891–894. https://doi.org/10.1029/94GL00771
  • 31. Maus S, Dimri VP (1995) Potential field power spectrum inversion for scaling geology. J Geophys Res Solid Earth 100(B7):12605–12616. https://doi.org/10.1029/95JB00758
  • 32. Maus S, Dan G, Fairhead D (1997) Curie-temperature depth estimation using a self-similar magnetization model. Geophys J Int 129(1):163–168. https://doi.org/10.1111/j.1365-246X.1997.tb00945.x
  • 33. Maus S, Barckhausen U, Berkenbosch H et al (2009) EMAG2: a 2–arc min resolution earth magnetic anomaly grid compiled from satellite, airborne, and marine magnetic measurements. Geochem Geophys Geosyst 10(8):4918. https://doi.org/10.1029/2009gc002471
  • 34. Müller RD, Sdrolias M, Gaina C et al (2008) Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem Geophys Geosyst 9(4):Q04006. https://doi.org/10.1029/2007GC001743
  • 35. Okubo Y (1985) Curie point depths of the Island of Kyushu and surrounding areas, Japan. Geophysics 50(3):481–494. https://doi.org/10.1190/1.1441926
  • 36. Okubo Y, Matsunaga T (1994) Curie point depth in northeast Japan and its correlation with regional thermal structure and seismicity. J Geophys Res Solid Earth 99(B11):22363–22371. https://doi.org/10.1029/94JB01336
  • 37. Pilkington M, Todoeschuck JP (1993) Fractal magnetization of continental crust. Geophys Res Lett 20(7):627–630. https://doi.org/10.1029/92GL03009
  • 38. Pilkington M, Todoeschuck JP (1995) Scaling nature of crustal susceptibilities. Geophys Res Lett 22(7):779–782. https://doi.org/10.1029/95GL00486
  • 39. Pilkington M, Todoeschuck JP (2004) Power-law scaling behavior of crustal density and gravity. Geophys Res Lett 31(9):51–55. https://doi.org/10.1029/2004GL019883
  • 40. Ravat D, Pignatelli A, Nicolosi I et al (2007) A study of spectral methods of estimating the depth to the bottom of magnetic sources from near-surface magnetic anomaly data. Geophys J Int 169(2):421–434. https://doi.org/10.1111/j.1365-246X.2007.03305.x
  • 41. Ravat D, Morgan P, Lowry AR (2016) Geotherms from the temperature-depth-constrained solutions of 1-D steady-state heat-flow equation. Geosphere 12(4):1187–1197. https://doi.org/10.1130/GES01235.1
  • 42. Ross HE, Blakely RJ, Zoback MD (2006) Testing the use of aeromagnetic data for the determination of Curie depth in California. Geophysics 71(5):L51–L59. https://doi.org/10.1190/1.2335572
  • 43. Salem A, Green C, Ravat D et al (2014) Depth to Curie temperature across the central Red Sea from magnetic data using the de-fractal method. Tectonophysics 624–625:75–86. https://doi.org/10.1016/j.tecto.2014.04.027
  • 44. Shuey RT, Schellinger DK, Tripp AC et al (1977) Curie depth determination from aeromagnetic spectra. Geophys J Roy Astron Soc 50(1):75–101. https://doi.org/10.1111/j.1365-246X.1977.tb01325.x
  • 45. Spector A, Grant FS (1970) Statistical models for interpreting aeromagnetic data. Geophysics 35(2):293–302. https://doi.org/10.1190/1.1440092
  • 46. Tanaka A (2017) Global centroid distribution of magnetized layer from world digital magnetic anomaly map. Tectonics 36:3248–3253. https://doi.org/10.1002/2017TC004770
  • 47. Tanaka A, Okubo Y, Matsubayashi O (1999) Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia. Tectonophysics 306(3):461–470. https://doi.org/10.1016/S0040-1951(99)00072-4
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-21e34c6c-88da-4b69-b1e5-8e77fad38bbc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.