PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A sliding mode controller design for thermal comfort in buildings

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the factors determining comfort in buildings is the indoor air temperature of the rooms. A control system, part of the home automation system, should stabilise air temperature to the desired level, despite various disturbances such as the presence of random or occasional sources of heat. Inaccurate models of the dynamics of air temperature changes in buildings prescribe the use of robust control methods, a type of which is the sliding mode controller. This article presents the application of a sliding mode controller (SMC) to home automation systems, designed to control air temperature inside a building. The sliding-mode controller makes use of sliding surfaces, which are defined by the assumed trajectory and the system output. The control law is designed in such a way that the trajectory of the system tends to the sliding surface from any initial point and remains on it after reaching the sliding surface. In this article, a model at air temperature change dynamics inside a building is presented. The modelling approach relies on the lumped-parameter methodology, in which distributed physical properties are represented by lumped parameters (such as thermal capacity or resistance). The model takes into account the loss of heat through conduction and ventilation, as well as internal heat gain. The parameters of the model can be obtained easily from the thermal properties of the construction materials. Theoretical considerations were applied in simulation experiments and the results of these experiments confirm the performance improvement achieved by the proposed solutions
Rocznik
Strony
475--489
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
  • AGH University of Science and Technology Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering Department of Automatic Control and Robotics Al. Mickiewicza 30, 30-059 Kraków, Poland ∗Corresponding
  • AGH University of Science and Technology Faculty of Electrical Engineering, Automatics, Computer Science and Biomedical Engineering Department of Automatic Control and Robotics Al. Mickiewicza 30, 30-059 Kraków, Poland ∗Corresponding
Bibliografia
  • 1. Edward C., Spurgeon S., Sliding mode control: theory and appliations, Taylor and Francis, London, 1998.
  • 2. Pisano A., Usai E., Sliding mode control: a survey with application in math, Mathematics and Computers in Simulation, 81(5): 954–979, 2011.
  • 3. Długosz M., Optimization problems of power transmission in automation and robotics, Przeglad Elektrotechniczny, 87(9A): 238–242, 2011.
  • 4. Abid M., Mansouri A., Aissaoui A., Belabbes B., Sliding mode application in position control of an induction machine, Journal of Electrical Engineering, 59(6): 322–327, 2008.
  • 5. Perić S.L., Antić D.S., Nikolić V.D., Mitić D.B., Milojković M.T., Nikolić S.S., A new approach to the sliding mode control design: anti–lock braking system as a case study, Journal of Electrical Engineering, 65(1): 37–43, 2014.
  • 6. Bandyopadhyay B., Deepak F., Kim K.S., Sliding mode control using novel sliding surfaces, Springer-Verlag, Berlin, Heidelberg, 2010.
  • 7. Liu J., Sun F., A novel dynamic terminal sliding mode control of uncertain nonlinear systems, Journal of Control Theory and Applications, 5(2): 189–193, 2007.
  • 8. Man Z., Yu X.H., Terminal sliding mode control of MIMO linear systems, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, 44(11): 1065– 1070, 1997.
  • 9. Mobayen S., Majd V.J., Sojoodi M., An LMI-based composite nonlinear feedback terminal sliding-mode controller design for disturbed MIMO systems, Mathematics and Computers in Simulation, 85(11): 1–10, 2012.
  • 10. Kulkarni M.R., Hong F., Energy optimal control of a residential space-conditioning system based on sensible heat transfer modeling, Building and Environment, 39(1): 31–38, 2004.
  • 11. Blasco C., Monreal J., Benítez I., Lluna A., Modelling and PID control of HVAC system according to energy efficiency and comfort criteria, [in:] Sustainability in Energy and Buildings, N. M’Sirdi, A. Namaane, R.J. Howlett, L.C. Jain (Eds), pp. 365–374, Springer, Berlin, Heidelberg, 2012.
  • 12. Fourier J., The analytical theory of heat, Dover Publicatons, Inc., New York, USA, 1955.
  • 13. Jakob M., Heat transfer, John Willey & Sons, New York, USA, 1949.
  • 14. Gröber H., Erk S., Fundamentals of Heat Transfer, McGraw-Hill, 1961.
  • 15. Lu X., Clements-Croome D., Viljanen M., Past, present and future mathematical models for buildings: focus on intelligent buildings (part 1), Intelligent Buildings International, 1(1): 23–38, 2009.
  • 16. Lu X., Clements-Croome D., Viljanen M., Past, present and future mathematical models for buildings: focus on intelligent buildings (part 2), Intelligent Buildings International, 1(2):131–141, 2009.
  • 17. Clarke J., Energy simulation in building design, Butterworth Heinemann, Woburn, USA, 2001.
  • 18. Underwood C.P., Yik F., Modelling methods for energy in buildings, Blackwell Science, Oxford, United Kingdom, 2004.
  • 19. Gouda M.M., Danaher S., Underwood C.P., Low-order model for the simulation of a building and its heating system, Building Services Engineering Research and Technology, 21(3): 199–208, 2000.
  • 20. Gouda M.M., Danaher S., Underwood C.P., Building thermal model reduction using nonlinear constrained optimization, Building and Environment, 37(12): 1255–1265, 2002.
  • 21. Bergman T.L., Incropera F.P., DeWitt D.P., Lavine A.S., Fundamentals of heat and mass transfer, John Wiley & Sons, 2011.
  • 22. Davies M.G., Building Heat Transfer, John Wiley & Sons, 2004.
  • 23. Długosz M., Aggregation of state variables in an RC model, Building Services Engineering Research and Technology, 39(1): 66–80, 2018.
  • 24. Sierociuk D., Dzieliński A., Sarwas G., Petras I., Podlubny I., Skovranek T., Modelling heat transfer in heterogeneous media using fractional calculus, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1990): 20120146, 2013.
  • 25. Oprzędkiewicz K., Non integer order, state space model of heat transfer process using Caputo-Fabrizio operator, Bulletin of the Polish Academy of Sciences: Technical Sciences, 66(3): 249–255, 2018, doi: 10.24425/122105.
  • 26. Długosz M., Skruch P., The application of fractional-order models for thermal process modelling inside buildings, Journal of Building Physics, 39(5): 440– 451, 2016.
  • 27. Polish Committee for Standardization, PN-EN ISO 13790:2009. Thermal performance of buildings – Calculation of energy use for space heating and cooling, http://www.pkn.pl (accessed: August 29, 2012), 2009.
  • 28. Polish Committee for Standardization,PN-EN ISO 6946:2008. Building components and building elements. Thermal resistance and thermal transmittance – Calculation method, http://www.pkn.pl (accessed: August 29, 2012), 2008.
  • 29. Polish Committee for Standardization, PN-B-03430:1983. Ventilation in dwelling and public utility buildings – Specifications, http://www.pkn.pl (accessed: August 29, 2012), 1983.
  • 30. Moulay E., Perruquetti W., Finite time stability and stabilization of a class of continuous systems, Journal of Mathematical Analysis and Applications, 323(2): 1430–1443, 2006.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-21e1dbe4-3965-49f6-a2a0-5279e193639a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.