PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tribological Tests of Acrylic Teeth for Removable Dentures

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Badania tribologiczne zębów akrylowych do protez ruchomych
Języki publikacji
EN
Abstrakty
EN
The functionality of removable dentures is ensured by proper diagnostics and clinical modeling. No less important are the structural conditions and the biotribological and biomechanical context, which determine the wear resistance in the contact of opposing teeth and the contact of the denture plate with the stomatognathic system. The aim of the study is to evaluate acrylic teeth used in prosthetic reconstructions based on microstructural, micromechanical and tribological tests. Samples for testing were taken from teeth for removable dentures made by various manufacturers. Microstructural analyses were performed using an optical microscope and a scanning microscope. Microhardness and elasticity coefficient measurements were performed on the NHT device. Tribological tests were performed on a Roxana Machine Works tester using a friction node: ball – 3 discs made of the tested material. The conducted research allowed for the evaluation of the structural quality of acrylic teeth and the determination of the tribological interaction resulting from the contact of synthetic and natural teeth in the presence of artificial saliva.
PL
Funkcjonalność protez ruchomych zapewnia prawidłowa diagnostyka i modelowanie kliniczne. Nie mniej ważne są uwarunkowania strukturalne oraz kontekst biotribologiczny i biomechaniczny, które decydują o odporności na zużycie w kontakcie zębów przeciwstawnych oraz o kontakcie płyty protezy z układem stomatognatycznym. Celem opracowania jest ocena zębów akrylowych stosowanych w rekonstrukcjach protetycznych na podstawie badań mikrostrukturalnych, mikromechanicznych i tribologicznych. Próbki do badań pobierano z zębów do protez ruchomych wykonanych przez różnych producentów. Analizy mikrostrukturalne wykonano na mikroskopie optycznym i mikroskopie skaningowym. Pomiary mikrotwardości i współczynnika elastyczności przeprowadzono na urządzeniu NHT. Badania tribologiczne wykonano na maszynie Roksana Machine Works z zastosowaniem węzła tarcia: kula – 3 krążki z materiału badanego. Przeprowadzone badania pozwoliły na ocenę jakości strukturalnej zębów akrylowych oraz na wyznaczenie interakcji tribologicznej wynikającej z kontaktu zębów syntetycznych i naturalnych w obecności sztucznej śliny.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
105--116
Opis fizyczny
Bibliogr. 41 poz., rys., tab., wykr., wz.
Twórcy
  • Jagiellonian University Medical College, Faculty of Medicine, Dental Institute, Department of Dental Prosthodontics and Orthodontics, 4 Montelupich Street, 31-155 Krakow, Poland
  • AGH University of Krakow, Faculty of Mechanical Engineering and Robotics, Mickie wicza 30 Ave., 30-059 Krakow, Poland
  • AGH University of Krakow, Faculty of Non-Ferrous Metals, Mickiewicza 30 Ave., 30-059 Krakow, Poland
autor
  • AGH University of Krakow, Faculty of Mechanical Engineering and Robotics, Mickiewicza 30 Ave., 30-059 Krakow, Poland
  • University of Applied Science in Nowy Sacz, Faculty of Health Sciences, Kościuszki 2G Str., 33-300 Nowy Sacz, Poland
Bibliografia
  • 1. Raszewski Z., Nowakowska-Toporowska A., Nowakowska D., Więckiewicz W.: Update on acrylic resins used in dentistry. Mini Reviews in Medicinal Chemistry, 21(15), 2021, pp. 2130–2137.
  • 2. Viegas M.M., Bhat V.S., Shetty S.K.: Effect of mechanical and chemical surface treatment on bondstrength of acrylic denture teeth to heat cure acrylic resin-an invitro study. IP Ann. Prosthodont. Restor. Dent., 7(3), 2021, pp. 161–168.
  • 3. Abbasi S., Nikanjam S., Shishehian A., Khazaei S., Fotovat F., Pana N.H.: A comparative evaluation of wear resistance of three types of artificial acrylic teeth after removing the glaze layer. Dental Research Journal, 19, 2022.
  • 4. Mousa M.A., Abdullah J.Y., Jamayet N.B., El-Anwar M.I., Ganji K.K., Alam M.K., Husein A.: Biomechanics in removable partial dentures: a literature review of FEA-based studies. BioMed research international, 2021.
  • 5. Bakhtiyorovna M.U.: Causes of removable denture breaks and allergic reactions. Spectrum Journal of Innovation, Reforms and Development, 10, 2022, pp. 374–377.
  • 6. Yadav R., Lee H., Lee J.H., Singh R.K., Lee H.H.: A comprehensive review: Physical, mechanical, and tribological characterization of dental resin composite materials. Tribology International, 2022, 108102.
  • 7. Dayan C., Kiseri B., Gencel B., Kurt H., Tuncer N.: Wear resistance and microhardness of various interim fixed prosthesis materials. Journal of oral science, 61(3), 2019, pp. 447–453.
  • 8. Ryniewicz A.M., Machniewicz T., Ryniewicz W., Bojko Ł.: Strength tests of the polymers used in dental prosthetics. Archive of Mechanical Engineering, 65(4), 2018, pp. 515–525.
  • 9. Ryniewicz A.M., Ryniewicz W., Bojko Ł., Pałka P.: Tribological tests and impact tests of acrylic polymers for dental prosthetics. Tribologia, 280(4), 2018, pp. 89–95.
  • 10. Helal M.A., Yang B., Saad E., Abas M., Al-Kholy M.R., Imam A.Y., Gad M.M.L Effect of SiO2and Al2O3 nanoparticles on wear resistance of PMMA acrylic denture teeth. Brazilian Dental Science, 23(3), 2020, 12-p.
  • 11. El-Tamimi K.M., Bayoumi D.A., Ahmed M.M., Albaijan I., El-Sayed M.E.: The effect of salinized nano ZrO2 particles on the microstructure, hardness, and wear behavior of acrylic denture tooth nanocomposite. Polymers, 14(2), 2022, p. 302.
  • 12. Mudliar V.L., Tieh M.T., Aarts, J.M., Paras A., Choi J.J.E.: Wear of Modern Denture Teeth – A Systematic Review. Oral, 2(1), 2022, pp. 95–111.
  • 13. Souza J.C., Silva C.S., Caramês J., Henriques B., de Oliveira A.P.N., Silva F.S., Gomes J.R.: Wear behavior of dental glass-ceramics: a scoping review on the damage of opposing tooth enamel surfaces. Biotribology, 21, 2020, p. 100116.
  • 14. Tokunaga J., Ikeda H., Nagamatsu Y., Awano S., Shimizu H.: Wear of polymer-infiltrated ceramic network materials against enamel. Materials, 15(7), 2022, p. 2435.
  • 15. Gupta A., Mohan I., Jude R.R., Suryawanshi A., Behera N.: Investigation of stress and tribological properties of dental composite materials using FEM. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 237(5), 2023, pp. 1070–1084.
  • 16. Altaie S.F.: Tribological, microhardness and color stability properties of a heat-cured acrylic resin denture base after reinforcement with different types of nanofiller particles. Dent. Med. Probl, 60, 2023, pp. 295–302.
  • 17. Abdelraouf R.M., Bayoumi R.E., Hamdy T.M.: Influence of incorporating 5% weight titanium oxide nanoparticles on flexural strength, micro-hardness, surface roughness and water sorption of dental selfcured acrylic resin. Polymers, 14(18), 2022, p. 3767.
  • 18. Motayagheni R., Adhami Z.E., Motlagh S.M.T., Mehrara F., Yasamineh N.: Color changes of three different brands of acrylic teeth in removable dentures in three different beverages: An in vitro study. Journal of Dental Research, Dental Clinics, Dental Prospects, 14(3), 2020, pp. 159–165.
  • 19. Uehara P.N., Iegami C.M., Tamaki R., Ballester R.Y., de Souza R.M., Laganá D.C.: Analysis of behavior of the wear coefficient in different layers of acrylic resin teeth. The Journal of Prosthetic Dentistry, 121(6), 2019, 967-e1.
  • 20. Baciu E.R., Vasluianu R.I., Ioanid N., Murariu A., Pavăl D., Holban C.C., Cretu C.I., Budală D.G.: The abrasive wear behavior analysis of the acrylic resins artificial teeth. Romanian Journal of Oral Rehabilitation, 13(1), 2021, pp. 160–163.
  • 21. Torno V., Soares P.: Tribological behavior and wear mechanisms of dental resin composites with different polymeric matrices. Journal of the Mechanical Behavior of Biomedical Materials, 144, 2023, p. 105962.
  • 22. Yu L., Zhu Y., Wang L., Zhang J., Zhou J., Fu Y.: Influence of 3D printing process parameters on the tribological properties of acrylic resin. Journal of Applied Polymer Science, 140(6), 2023, e53448.
  • 23. Gallab M., Taha M., Rashed A., Nabhan A.: Effect of low content of Al2O3 nanoparticles on the mechanical and tribological properties of polymethyl methacrylate as a denture base material. Egyptian Journal of Chemistry, 65(8), 2022, pp. 1–9.
  • 24. Ameer A.K., Mousa M.O., Ali W.Y., Samy A.M., El-Abd A.H.: Influence of Counterface Materials on the Tribological Behavior of Dental Polymethyl Methacrylate Reinforced by Single-Walled Carbon Nanotubes (SWCNT). SVU-International Journal of Engineering Sciences and Applications, 3(2), 2022, pp. 68–79.
  • 25. ASTM E2546-15 – Standard Practice for Instrumented Indentation Testing.
  • 26. Sayed M.E., Porwal A., Jain S., Alshehri A.H., Alqahtani N.M., Hadadi A.H.A., Zakri R.A., Zeed S.M.M., Nahari S.I., Alsurayyie F.H., Alqarni H., Alqahtani S.M., AlResayes S.S.: Linear dimensional change in acrylic denture teeth positions factored by different processing techniques and occlusal forms: an in vitro study. Applied Sciences, 12(14), 2022, p. 7058.
  • 27. Teodorescu C., Preoteasa E., Preoteasa C.T., Murariu-Măgureanu C., Teodorescu I.M.: Perception and attitudes of dentists regarding the complications of conventional acrylic dentures and overdentures supported by teeth or implants. Journal of Medicine and Life, 15(8), 2022, pp. 1031–1037.
  • 28. Friel T., Waia S.: Removable partial dentures for older adults. Primary dental journal, 9(3), 2020, pp. 34–39.
  • 29. Nishiyama H., Taniguchi A., Tanaka S., Baba K.: Novel fully digital workflow for removable partial denture fabrication. Journal of prosthodontic research, 64(1), 2020, pp. 98–103.
  • 30. Ryniewicz W., Bojko Ł., Ryniewicz A.M.: The Impact of Sintering Technology and Milling Technology on Fitting Titanium Crowns to Abutment Teeth – In Vitro Studies. Materials, 15(17), 2022, p. 5835.
  • 31. Bojko Ł., Ryniewicz A.M., Ryniewicz W.: Strength Tests of Alloys for Fixed Structures in Dental Prosthetics. Materials, 15(10), 2022, p. 3497.
  • 32. Ryniewicz W., Ryniewicz A.M., Bojko Ł.: The effect of a prosthetic crown’s design on the accuracy of mapping an abutment teeth’s shape. Measurement, 91, 2016, pp. 620–627.
  • 33. Ryniewicz A.M., Bojko Ł., Ryniewicz W.I.: Microstructural and micromechanical tests of titanium biomaterials intended for prosthetic reconstructions. Acta of Bioengineering and Biomechanics, 18(1), 2016, pp. 121–127.
  • 34. Ryniewicz W., Ryniewicz A.M., Bojko Ł.: Modeling crowns and assessment of the accuracy of mapping the shape of prosthetic abutments. Prz. Elektrotech, 90(5), 2014, pp. 146–149.
  • 35. Bojko Ł., Ryniewicz A.M., Bogucki R., Pałka P.: Microstructural and strength studies Co-Cr-Mo alloy on prosthetic reconstructions in casting technology and laser sintering. Przegląd elektrotechniczny, 91(5), 2015, pp. 29–32.
  • 36. Schoeffel A.C., Bagio P., Sakima V.T., Soares S., Neppelenbroek K.H., Urban V.M.: Knoop microhardness of conventional and microwaved denture base acrylic resins. Indian Journal of Dental Research, 30(6), 2019, pp. 927–932.
  • 37. Neves C.B., Chasqueira A.F., Rebelo P., Fonseca M., Portugal J., Bettencourt A.: Microhardness and flexural strength of two 3D-printed denture base resins. Rev Port Estomatol Med Dent Cir Maxilofac, 63, 2022, pp. 198–203.
  • 38. Saygin A.G.,Yildirimoğlu M.: Comparison of Microhardness of Artificial Teeth with Different Contents After Waiting in Various Liquids. Cumhuriyet Dental Journal, 25(2), 2022, pp. 111–116.
  • 39. Lei L., Zheng L., Xiao H., Zheng J., Zhou Z.: Wear mechanism of human tooth enamel: The role of interfacial protein bonding between HA crystals. Journal of the Mechanical Behavior of Biomedical Materials, 110, 2020, p. 103845.
  • 40. Abbod E.A., Al-Waily M., Al-Hadrayi Z.M., Resan K.K., Abbas S.M.: Numerical and experimental analysis to predict life of removable partial denture. In IOP Conference Series: Materials Science and Engineering, 870(1), 2020, p. 012149.
  • 41. Bojko Ł., Ryniewicz W., Ryniewicz A., Kot M.: Study of the impact of incremental technology on mechanical and tribological properties of biomaterials. Tribologia, 273(3), 2017, pp. 29–38.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-21ddc5f0-a601-4644-87f0-3f879255fc7e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.