PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Deterministic seismic damage analysis for concrete gravity dams: a case study of oued fodda dam

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the major dangers for seismic damage of concrete dams is the propagation of cracks in dam concrete. The present study undertakes a numerical investigation of the seismic damage for Oued Fodda concrete gravity dam, located in the northwest of Algeria, considering the impacts of properties of joints along the dam-foundation rock interface and cross-stream earthquake excitation. Three-dimensional transient analyses for coupled dam-foundation rock system are carried out using Ansys software. The hydrodynamic effect of reservoir fluid is modelled using the added mass approach. The smeared crack approach is utilised to present the seismic damage of dam concrete using the Willam and Warnke failure criterion. The dam-foundation rock interface joints are presented with two ways, adhesive joints and frictional joints. The Drucker–Prager model is considered for dam concrete in nonlinear analyses. Consideration of the study results indicates that the frictional joints model can reduce the seismic response and damage hazard of the dam body to a better extent compared with the adhesive joints model. Furthermore, the application of cross-stream earthquake excitation reveals the significant effect on cracking response of the dam in the two models of joints.
Rocznik
Strony
347--356
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wykr.
Twórcy
  • Laboratory of Materials and Mechanics of Structures (LMMS), Department of Civil Engineering, Faculty of Technology, University of Msila, PB 166 M'sila 28000, Algeria
  • Smart Structures Laboratory, University of Ain Temouchent, Department of Civil Engineering, Route de Sidi Bel Abbes - BP 284, Aïn Temouchent, Algeria
Bibliografia
  • 1. Mridha S, Maity D. Experimental investigation on nonlinear dynamic response of concrete gravity dam-reservoir system. Engineering Structures. 2014;80:289-97. Available from: https://doi.org/10.1016/j.engstruct.2014.09.017
  • 2. Valamanesh V, Estekanchi HE, Vafai A, Ghaemian M. Application of the endurance time method in seismic analysis of concrete gravity dams. Scientia Iranica. 2011;18(3):326-37. Available from: https://doi.org/10.1016/j.scient.2011.05.039
  • 3. Hariri-Ardebili MA. Impact of foundation nonlinearity on the crack propagation of high concrete dams. Soil Mechanics and Foundation Engineering. 2014,51(2):72-82.
  • 4. Pirooznia A, Moradloo AJ. Seismic fracture analysis of concrete arch dams incorporating the loading rate dependent size effect of concrete. Structural Engineering and Mechanics, An Int'l Journal. 2021;79(2):169-98. Available from: https://https://doi.org/10.12989/sem.2021.79.2.169
  • 5. Lee J, Fenves GL. A plastic‐damage concrete model for earthquake analysis of dams. Earthquake engineering & structural dynamics. 1998;27(9):937-56. Available from: https://doi.org/10.1002/(SICI)1096-9845(199809)27:9<937::AID-EQE764>3.0.CO;2-5
  • 6. Omidi O, Valliappan S, Lotfi V. Seismic cracking of concrete gravity dams by plastic-damage model using different damping mechanisms. Finite Elements in Analysis and Design. 2013;63:80-97. Available from: https://doi.org/10.1016/j.finel.2012.08.008
  • 7. Wang G, Wang Y, Lu W, Yu M, Wang C. Deterministic 3D seismic damage analysis of Guandi concrete gravity dam: A case study. Engineering Structures. 2017;148:263-76. Available from: https://doi.org/10.1016/j.engstruct.2017.06.060
  • 8. Wang G, Lu W, Zhang S, Wang G, Lu W, Zhang S. Comparative analysis of nonlinear seismic response of concrete gravity dams using XFEM and CDP model. Seismic Performance Analysis of Concrete Gravity Dams. 2021;57:11-51. Available from: https://doi.org /10.1007/978-981-15-6194-8_2
  • 9. Ghrib F, Tinawi R. An application of damage mechanics for seismic analysis of concrete gravity dams. Earthquake Eng Struct Dynam. 1995;24(2):157-73. Available from: https://doi.org/10.1002/eqe.4290240203
  • 10. Guanglun W, Pekau OA, Chuhan Z, Shaomin W. Seismic fracture analysis of concrete gravity dams based on nonlinear fracture me-chanics. Engineering Fracture Mechanics. 2000;65(1):67-87. Available from: https://doi.org/10.1016/S0013-7944(99)00104-6
  • 11. Wang G, Wang Y, Lu W, Zhou C, Chen M, Yan P. XFEM based seismic potential failure mode analysis of concrete gravity dam-water-foundation systems through incremental dynamic analysis. Eng Struct. 2015;98:81-94. Available from: https://doi.org/10.1016/j.engstruct.2015.04.023
  • 12. Zhao E, Li B. Evaluation method for cohesive crack propagation in fragile locations of RCC dam using XFEM. Water, 2020;13(1):58. Available from: https://doi.org/10.3390/w13010058
  • 13. Haghani M, Neya BN, Ahmadi MT, Amiri JV. Combining XFEM and time integration by α-method for seismic analysis of dam-foundation-reservoir. Theoretical and Applied Fracture Mechanics. 2020;109:102-22. Available from: https://doi.org/10.1016/j.tafmec.2020.102752
  • 14. Haghani M, Neya BN, Ahmadi MT, Amiri JV. A new numerical approach in the seismic failure analysis of concrete gravity dams using extended finite element method. Engineering Failure Analysis. 2022;132:105835. Available from: https://doi.org/10.1016/j.engfailanal.2021.105835
  • 15. Wang Y, Waisman H. From diffuse damage to sharp cohesive cracks: a coupled XFEM framework for failure analysis of quasi-brittle materials. Comput Methods Appl Mech Eng. 2016;299:57-89. Available from: https://doi.org/10.1016/j.cma.2015.10.019
  • 16. Ouzandja D, Tiliouine B. Effects of dam-foundation contact conditions on seismic performance of concrete gravity dams. Arabian Journal for Science and Engineering. 2015;
  • 17. Ouzandja D. (2016). Effets des conditions de contact à l’interface barrage-fondation sur la performance sismique des barrages-poids en béton. Thèse de doctorat, Ecole Nationale Polytechnique (E.N.P), Alger, Algérie.
  • 18. Saichi T, Renaud S, Bouaanani N, Miquel B. Effects of rock founda-tion roughness on the sliding stability of concrete gravity dams based on topographic surveys. Journal of Engineering Mechanics. 2019;145(7):04019043. Available from: https://doi.org/10.1061/(ASCE)EM.1943-7889.0001604
  • 19. Gharibdoust A, Aldemir A, Binici B. Seismic behaviour of roller com-pacted concrete dams under different base treatments. Structure and Infrastructure Engineering. 2020;16(2):355-66. Available from: https://doi.org/10.1080/15732479.2019.1661500
  • 20. Sen U, Okeil AM. Effect of biaxial stress state on seismic fragility of concrete gravity dams. Earthquakes and Structures. 2020;18(3):285-96. Available from: https://doi.org/10.12989/eas.2020.18.3.285
  • 21. Ouzandja D, Messaad M. Seismic response analysis of concrete gravity dams considering base sliding. 1st International Conference on Geotechnical, Structural and Advanced Materials Engineering 2022.
  • 22. Azmi M, Paultre p. Three-dimensional analysis of concrete dams including contraction joint non-linearity. Eng Struct. 2002;24(6):757-71. Available from: https://doi.org/10.1016/S0141-0296(02)00005-6
  • 23. Dowdell DJ, Fan BH. Practical aspects of engineering seismic dam safety case study of a concrete gravity dam. Proc - 13th World Conference on Earthquake Engineering 2004.
  • 24. Brand B, Dollar DA, Hasan H, Hernandez L, Nuss LK, Rowell R, Wallace, WA. Selecting analytic tools for concrete dams to address key events along potential failure mode paths. FEMA P-1016, Federal Emergency Management Agency. 2014.
  • 25. New Zealand Society on Large Dams (NZSOLD). New Zealand Dam Safety Guidelines. 2015.
  • 26. Wang H, Feng M, Yang H. Seismic nonlinear analyses of a concrete gravity dam with 3D full dam model. Bull Earthq Eng. 2012;10(6):1959-77. Available from: https://doi.org/10.1007/s10518-012-9377-4
  • 27. Kartal ME. Three-dimensional earthquake analysis of roller compacted concrete dams. Nat Hazards Earth Syst Sci. 2012;12:2369-88. Available from: https://doi.org/10.5194/nhess-12-2369-2012
  • 28. Wang JT, Lv DD, Jin F, Zhang, CH. Earthquake damage analysis of arch dams considering dam-water-foundation interaction. Soil Dynamics and Earthquake Engineering. 2013;49:64-74. Available from: https://doi.org/10.1016/j.soildyn.2013.02.006
  • 29. Yilmazturk SM, Arici Y, Binici B. Seismic assessment of a monolithic RCC gravity dam including three dimensional dam-foundation-reservoir interaction. Eng Struct. 2015;100:137-48. Available from: https://doi.org/10.1016/j.engstruct.2015.05.041
  • 30. Ouzandja D, Tiliouine B, Belharizi M, Kadri M. Three-dimensional nonlinear seismic response of oued fodda concrete gravity dam considering contact elements at dam-reservoir interaction interface. Asian Journal of Civil Engineering (bhrc). 2017;18(6):977-92.
  • 31. Omidi O, Lotfi V. Seismic plastic-damage analysis of mass concrete blocks in arch dams including contraction and peripheral joints. Soil Dynamics and Earthquake Engineering. 2017;95:118-37.
  • 32. Liang H, Tu J, Guo S, Liao J, Li D, Peng S. Seismic fragility analysis of a High Arch Dam-Foundation System based on seismic instability failure mode. Soil Dynamics and Earthquake Engineering. 2020;130:105981.
  • 33. Ftima MB, Lafrance S, Léger P. Three-dimensional modelling of shear keys in concrete gravity dams using an advanced grillage method. Water Science and Engineering. 2020;13(3):223-32.
  • 34. Khassaf SI, Chkheiwr AH, Jasim MA. Effect of contraction joints on structural behavior of double curvature concrete dam subject to dynamic loading. IOP Conference Series: Materials Science and Engineering. 2020;888(1):012026. Available from: https://doi.org/10.1088/1757-899X/888/1/012026
  • 35. Daneshyar A, Ghaemian M. Seismic analysis of arch dams using anisotropic damage-plastic model for concrete with coupled adhesive-frictional joints response. Soil Dynamics and Earthquake Engineering. 2019;125:105735. Available from: https://doi.org/10.1016/j.soildyn.2019.105735
  • 36. Willam Kj, Warnke ED. Constitutive model for the triaxial behavior of concrete. Proc - International Association for Bridge and Structural Engineering 1975. 1975;19:1-30.
  • 37. Westergaard HM. Water pressures on dams during earthquake. Trans. ASCE. 1933;98(2): 418-33. Available from: https://doi.org/10.1061/TACEAT.0004496
  • 38. Drucker DC, Prager W. Soil mechanics and plastic analysis of limit design. Q. Appl. Math. 1952;10(2):157-65.
  • 39 ANSYS. Theory user’s manual. Swanson Analysis Systems Inc., Houston, PA, USA, 2018. 40(11):3047-56. Available from: https://doi.org/10.1007/s13369-015-1770-2
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-21dc6430-397d-4ec8-98a2-f18689b48c49
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.