Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Flowability is of great importance to a lot of processes especially granular material handling and heat transfer. In the industry achieving the highest heating efficiency of granular material heat exchanger is the most important factor. Heating/cooling area size is one of the critical factors in heat transfer processes and is highly dependent on flowability. The complexity of optimizing flowability can only be solved in two ways, either through experiment or computational modelling. However, the simulation technique is more time efficient and cost effective compared to the experimental analysis technique. Nonetheless, the CFD methodology requires prior validation of the model with the experiment. This study comprises of the experimental and numerical analysis of granular material flowability, and it aims at establishing a balanced flow of spherical silicon particles in a heat exchanger and developing a validated model that can be used for design optimisation. A Discrete Element Method (DEM) is employed in Simcenter STAR CCM+ to analyse the flow behaviour and is validated qualitatively and quantitatively from the experimental data. The results from both the simulation and the experiment exhibit a similar trend, indicating consistency between the two approaches. In both cases, the particle velocities are not uniform within the heat exchanger, as variations are observed across different regions, from 2 mm/s to 9 mm/s. Specifically, particles near the heat exchanger walls experience lower velocities due to higher frictional resistance, while those in the central flow stream, especially close to the outlet, move at relatively higher speeds. Quantitatively, the percentage difference between the simulation and experimental results is 9.53% for particle velocity and 5.61% for mass flow rate, which falls within an acceptable range for computational modelling of granular flow. This level of accuracy indicates that the simulation effectively captures the key flow dynamics within the heat exchanger, making it a reliable tool for further analysis. The study shows convincingly that the model was validated successfully, however investigated heat exchanger is highly inefficient but using the validated model can be optimized. The study comprises two parts. The first one presents the experimental and numerical particles flow analysis of the fluid (granular material), while the second one focuses on the experimental and numerical energy transfer (heating/cooling) analysis.
Rocznik
Tom
Strony
35--63
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr., zdj.
Twórcy
autor
- Department of Mechanical Engineering ScienceUniversity of Johannesburg, Gauteng, South Africa
- Department of Mechanical Engineering ScienceUniversity of Johannesburg, Gauteng, South Africa
autor
- Department of Mechanical Engineering ScienceUniversity of Johannesburg, Gauteng, South Africa
autor
- Drytech International (Pty) Ltd, Johannesburg, Gauteng, South Africa
autor
- Aerotherm (Pty) Ltd, Pretoria, Gauteng, South Africa
Bibliografia
- Aela P., Zong L., Esmaeili M., Siahkouhi M., Jing G. 2022. Angle of repose in the numerical modeling of ballast particles focusing on particle-dependent specifications: Parametric study. Particuology, 65: 39-50. https://doi.org/10.1016/j.partic.2021.06.006
- Ahmad M., Ismail K.A, MatF. 2016. Impact models and coefficient of restitution: A review. ARPN Journal of Engineering and Applied Sciences, 11(10): 6549-6555.
- Balevičius R., Kačianauskas R., MrózR., SielamowiczI.Z. 2011. Analysis and DEM simulation of granular material flow patterns in hopper models of different shapes. Advanced Powder Technology, 22(2): 226-235. https://doi.org/10.1016/j.apt.2010.12.005
- Beakawi Al-Hashemi H.M., Baghabra Al-Amoudi O.S. 2018. A review on the angle of repose of granular materials. Powder Technology, 330: 397-417. https://doi.org/10.1016/j.powtec.2018.02.003
- Boateng A.A. 1998. Boundary layer modeling of granular flow in the transverse plane of a partially filled rotating cylinder. International Journal of Multiphase Flow, 24(3): 499-521. https://doi.org/10.1016/S0301-9322(97)00065-7
- Fernandes A.C.S., Gomes H.C., Campello E.M.B., Pimenta P.M. 2017. A fluid-particle interaction method for the simulation of particle-laden fluid problems. Proceedings of the XXXVIII Iberian Latin American Congress on Computational Methods in Engineering, no. January. https://doi.org/10.20906/cps/cilamce2017-0139
- Das S.K., Gautam S.S. 2024. A comprehensive isogeometric analysis of frictional Hertz contact problem. Tribology International, 200: 110078. https://doi.org/10.1016/j.triboint.2024.110078
- Grima A.P., Wypych P.W. 2011. Development and validation of calibration methods for discrete element modelling. Granular Matter, 13(2): 127-132. https://doi.org/10.1007/s10035-010-0197-4
- Hao T. 2008. Viscosities of liquids, colloidal suspensions, and polymeric systems under zero or non-zero electric field. Advances in Colloid and Interface Science, 142(1-2): 1-19. https://doi.org/10.1016/j.cis.2008.04.002
- Jian B., Gao X. 2023. Investigation of spherical and non-spherical binary particles flow characteristics in a discharge hopper. Advanced Powder Technology, 34(5): 104011. https://doi.org/10.1016/j.apt.2023.104011
- Jiang H., Nie J., Debanath O.C., Li Y. 2025. Dynamic column collapse of dry granular materials with multi-scale shape characteristics. Computers and Geotechnics, 177(Part A): 106873. https://doi.org/10.1016/j.compgeo.2024.106873
- Kallus Y. 2016. The random packing density of nearly spherical particles. Soft Matter, 12(18): 4123-4128. https://doi.org/10.1039/c6sm00213g
- Khan K.U.J., Xu W.J. 2024. The influencing factors and mechanisms of granular flow dynamics. Powder Technology, 449: 120376. https://doi.org/10.1016/j.powtec.2024.120376
- Kumar N. 2023. Chapter Eight – Fundamentals of conveyors. In: Transporting operations of food materials within food factories. Eds. S.M. Jafari, N. Malekjani. Woodhead Publishing, Sawston, p. 221-251. https://doi.org/10.1016/B978-0-12-818585-8.00003-9
- Li J., Peng F., Li H., Ru Z., Fu J., Zhu W. 2023. Material evaluation and dynamic powder deposition modeling of PEEK/CF composite for laser powder bed fusion process. Polymers, 15(13): 2863. https://doi.org/10.3390/polym15132863
- MatWeb. 2024. Silicon, Si. Retrieved from https://www.matweb.com/search/datasheet.aspx?matguid=7d1b56e9e0c54ac5bb9cd433a0991e27&n=1&ckck=1
- McGlinchey D. 2008. Bulk solids handling: equipment selection and operation. Blackwell Publishing, Hoboken. https://doi.org/10.1002/9781444305449
- Mindlin R.D., DeresiewiczH. 1953. Elastic spheres in contact under varying oblique forces. Journal of Applied Mechanics, 20(3): 327-344. https://doi.org/10.1115/1.4010702
- Qin R., Fang H., Liu F., Xing D., Yang J., Lv N., Chen J., Li J. 2019. Study on physical and contact parameters of limestone by DEM. IOP Conference Series: Earth and Environmental Science, 252(5): 052110. https://doi.org/10.1088/1755-1315/252/5/052110
- Santomaso A., Lazzaro P., Canu P. 2003. Powder flowability and density ratios: The impact of granules packing. Chemical Engineering Science, 58(13): 2857-2874. https://doi.org/10.1016/S0009-2509(03)00137-4
- Shi J., Shan Z., Yang H. 2024. Research on the macro- and meso-mechanical properties of frozen sand mold based on Hertz-Mindlin with Bonding model. Particuology, 88: 176-191. https://doi.org/10.1016/j.partic.2023.08.019
- Siemens Digital Industries Software. 2023. Simcenter STAR-CCM+ User Guide, version 2302. p. 5184-5218. Retrieved from https://docs.sw.siemens.com/documentation/external/PL20200805113346338/en-US/userManual/userguide/html/STARCCMP/GUID-28A739CF- 6DE2-4D87-B582-E390B522011C.html#
- Stanley-Wood N. 2009. Bulk powder properties: instrumentation and techniques. In: Bulk Solids Handling: Equipment Selection and Operation. Ed. D. McGlinchey. Blackwell Publishing, Hoboken, p. 1-67. https://doi.org/10.1002/9781444305449.ch1
- Staron L., Hinch E.J. 2007. The spreading of a granular mass: Role of grain properties and initial conditions. Granular Matter, 9(3-4): 205-217. https://doi.org/10.1007/s10035-006-0033-z
- Tahmasebi P. 2023. A state-of-the-art review of experimental and computational studies of granular materials: Properties, advances, challenges, and future directions. Progress in Materials Science, 138: 101157. https://doi.org/10.1016/j.pmatsci.2023.101157
- Thornton C., Cummins S.J., Cleary P.W. 2013. An investigation of the comparative behaviour of alternative contact force models during inelastic collisions. Powder Technology, 233: 30-46. https://doi.org/10.1016/j.powtec.2012.08.012
- Wang G., Niu Z., Liu Y., Cheng F. 2024. Two novel semi-analytical coefficients of restitution models suited for nonlinear impact behavior in granular systems. Powder Technology, 452: 120501. https://doi.org/10.1016/j.powtec.2024.120501
- Wensrich C.M., Katterfeld A. 2012. Rolling friction as a technique for modelling particle shape in DEM. Powder Technology, 217: 409-417. https://doi.org/10.1016/j.powtec.2011.10.057
- Zhang P., Bi Z., Yu H., Wang R., Sun G., Zhang S. 2023. Effect of particle surface roughness on the flowability and spreadability of Haynes 230 powder during laser powder bed fusion process. Journal of Materials Research and Technology, 26: 4444-4454. https://doi.org/10.1016/j.jmrt.2023.08.173
- Zheng Q.J., Yu A.B. 2015. Modelling the granular flow in a rotating drum by the Eulerian finite element method. Powder Technology, 286: 361-370. https://doi.org/10.1016/j.powtec.2015.08.025
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-21da705e-565e-4a8b-9f03-696e1a009e06
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.