PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Helicity of Convective Flows from Localized Heat Source in a Rotating Layer

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Experimental and numerical study of the steady-state cyclonic vortex from isolated heat source in a rotating fluid layer is described. The structure of laboratory cyclonic vortex is similar to the typical structure of tropical cyclones from observational data and numerical modelling including secondary flows in the boundary layer. Differential characteristics of the flow were studied by numerical simulation using CFD software Flow Vision. Helicity distribution in rotating fluid layer with localized heat source was analysed. Two mechanisms which play role in helicity generation are found. The first one is the strong correlation of cyclonic vortex and intensive upward motion in the central part of the vessel. The second one is due to large gradients of velocity on the periphery. The integral helicity in the considered case is substantial and its relative level is high.
Rocznik
Strony
177--188
Opis fizyczny
Bibliogr. 15 poz., fot., rys., tab.
Twórcy
  • Institute of Continuous Media Mechanics – Academ. Korolyov, 1, Perm, 614013, Russia
autor
  • Institute of Continuous Media Mechanics – Academ. Korolyov, 1, Perm, 614013, Russia
autor
  • Institute of Continuous Media Mechanics – Academ. Korolyov, 1, Perm, 614013, Russia
Bibliografia
  • [1] G.P. Bogatyrev. Excitation of a cyclonic vortex or a laboratory model for a tropical cyclone. Journal of Experimental and Theoretical Physics Letters, 51(11):630–633, 1990.
  • [2] G.P. Bogatyrev and B.L. Smorodin. Physical model of the rotation of a tropical cyclone. Journal of Experimental and Theoretical Physics Letters, 63(1):28–32, 1996. doi: 10.1134/1.566958.
  • [3] G.P. Bogatyrev, I.V. Kolesnichenko, G.V. Levina and A.N. Sukhanovsky. Laboratory model of generation of a large-scale spiral vortex in a convectively unstable rotating fluid. Izvestiya, Atmospheric and Oceanic Physics, 42(4): 423–429, 2006. doi: 10.1134/S0001433806040025.
  • [4] V. Batalov, A. Sukhanovsky and Frick P. Laboratory study of differential rotation in a convective rotating layer. Geophysical & Astrophysical Fluid Dynamics, 104(4):349–368, 2010. doi:10.1080/03091921003759876.
  • [5] A. Sukhanovskii, A. Evgrafova and E. Popova. Laboratory study of a steady-state convective cyclonic vortex. Quarterly Journal of the Royal Meteorological Society, 142(698):2214–2223, 2016. doi: 10.1002/qj.2823.
  • [6] S.S. Moiseev, R.Z. Sagdeev, A.V. Tur, G.A. Khomenko, and A.M. Shukurov. Physical mechanism of amplification of vortex disturbances in the atmosphere, Soviet Phys. Dokl. 28:926–928, 1983.
  • [7] E. Levich and E. Tzvetkov. Helical cyclogenesis. Physics Letters A, 100(1):53–56, 1984. doi:10.1016/0375-9601(84)90354-2.
  • [8] E. Levich and E. Tzvetkov. Helical inverse cascade in three-dimensional turbulence as a fundamental dominant mechanism in mesoscale atmospheric phenomena. Physics Reports, 128(1):1–37, 1985. doi: 10.1016/0370-1573(85)90036-5.
  • [9] D.K. Lilly. The structure, energetics and propagation of rotating convective storms. Part II: Helicity and storm stabilization. Journal of Atmospheric Sciences, 43(2):126–140, 1986.
  • [10] A. Eidelman, T. Elperin, I. Gluzman, and E. Golbraikh. Helicity of mean and turbulent flow with coherent structures in Rayleigh-Bénard convective cell. Physics of Fluids, 26(6), 2014. doi: 10.1063/1.4881939.
  • [11] F. Scarano and M.L. Riethmuller. Advances in iterative multigrid PIV image processing. Experiments in Fluids, 29(Suppl1):S051–S060, 2000. doi: 10.1007/s003480070007.
  • [12] A. Sukhanovskii, A. Evgrafova and E. Popova. Horizontal rolls over localized heat source in a cylindrical layer. Physica D: Nonlinear Phenomena, 316:23–33, 2016. doi:10.1016/j.physd.2015.11.007.
  • [13] H.K. Moffat. Magneti Field Generation in Electrically Conducting Fluids. Cambridge University Press, Cambridge, 1978.
  • [14] R. Stepanov, E. Golbraikh, P. Frick and A. Shestakov. Hindered energy cascade in highly helical isotropic turbulence. Physical Review Letters, 115(23):234501, 2015. doi: 10.1103/PhysRevLett.115.234501.
  • [15] A.V. Evgrafova, G.V. Levina and A.N. Sukhanovskii. Study of vorticity and helicity distribution in advective flow with secondary structures. Computational Continuum Mechanics, 6(4):451–459, 2013. doi: 10.7242/1999-6691/2013.6.4.49 (in Russian).
Uwagi
EN
This work was supported by the Russian Science Foundation (grant No. 16-41-02012).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-21d8271d-0e14-4312-b8c6-e825198e9321
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.