PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Establishing and characterizing a permanent magnet system for the prototype of NIS's Kibble balance

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The Kibble balance experiment is used to redefine the kilogram as a unit of mass based on the Planck constant. To demonstrate and understand the basic principle of the Kibble balance, the National Institute of Standards (NIS)-Egypt has constructed a prototype Kibble balance that can measure gram-level masses with 0.01% relative uncertainty. Through the construction of this prototype, the challenges can be studied and addressed to overcome the weaknesses of NIS’s prototype. This study presents the design and construction of the prototype Kibble balance. It also focuses on the design and performance of the magnetic system, which is a crucial element of the Kibble balance. Analytical modeling and finite element analysis were used to evaluate and improve the magnet system. Several other aspects were also discussed, including the yoke’s material and enhancing the magnetic profile within the air gap of the magnet system. Over a vertical distance of 30 mm inside the air gap, the magnetic flux density was found to be 0.3 T, and the uniformity was found to be 8 x 10-5.
Rocznik
Strony
3--16
Opis fizyczny
Bibliogr. 26 poz., rys., wykr., wzory
Twórcy
autor
  • National Institute of Standards (NIS), Tersa St, El-Haram, PO Box 136, Code 12211, Giza, Egypt
  • Department of Physics, Faculty of Science, Al-Azhar University, Assiut 71542, Egypt
autor
  • Central Metallurgical Research and Development Institute (CMRDI), P.O. BOX.87 Helwan, Egypt 11421
  • National Institute of Standards (NIS), Tersa St, El-Haram, PO Box 136, Code 12211, Giza, Egypt
Bibliografia
  • [1] Schlamminger, S., & Bettin, H. (2016). Realization, Maintenance and Dissemination of the Kilogram in the Revised SI. Metrologia, 53(5), A1-A5. https://doi.org/10.1088/0026-1394/53/5/A1
  • [2] International Bureau of Weights and Measures. (2018). Resolution Adopted at the 26th CGPM Meeting.
  • [3] Wood, B., & Bettin, H. (2019). The Planck constant for the definition and realization of the kilogram. Annalen der Physik, 531(5), 1800308. https://doi.org/10.1002/andp.201800308
  • [4] Milton, M. J., Davis, R., & Fletcher, N. (2014). Towards a new SI: a review of progress made since 2011. Metrologia, 51(3), R21. https://doi.org/10.1088/0026-1394/51/3/R21
  • [5] Li, S. S., Zhang, Z. H., Zhao, W., Li, Z. K., & Huang, S. L. (2014). Progress on accurate measurement of the Planck constant: Watt balance and counting atoms. Chinese Physics B, 24(1), 010601. https://doi.org/10.1088/1674-1056/24/1/010601
  • [6] Steiner, R. (2012). History and progress on accurate measurements of the Planck constant. Reports on Progress in Physics, 76(1), 016101. https://doi.org/10.1088/0034-4885/76/1/016101
  • [7] Fujii, K., Bettin, H., Becker, P., Massa, E., Rienitz, O., Pramann, A., Nicolaus, A., Kuramoto, N., Busch, I., & Borys, M. (2016). Realization of the kilogram by the XRCD method. Metrologia, 53(5), A19. https://doi.org/10.1088/0026-1394/53/5/A19
  • [8] Robinson, I. A., & Schlamminger, S. (2016). The watt or Kibble balance: a technique for implementing the new SI definition of the unit of mass. Metrologia, 53(5), A46. https://doi.org/10.1088/0026-1394/53/5/A46
  • [9] Haddad, D., Seifert, F., Chao, L. S., Li, S., Newell, D. B., Pratt, J. R., Williams, C., & Schlamminger, S. (2016). Invited Article: A precise instrument to determine the Planck constant, and the future kilogram. Review of Scientific Instruments, 87(6), 061301. https://doi.org/10.1063/1.4953825
  • [10] Weights of classes E1, E2, F1, F2, M1, M2, M3, Committee Draft OIML/CD R 111-1 of Edition 2004
  • [11] Schlamminger, S., & Haddad, D. (2019). The Kibble balance and the kilogram. Comptes Rendus Physique, 20(1-2), 55-63. https://doi.org/10.1016/j.crhy.2018.11.006
  • [12] Stock, M. (2012). Watt balance experiments for the determination of the Planck constant and the redefinition of the kilogram. Metrologia, 50(1), R1. https://doi.org/10.1088/0026-1394/50/1/R1
  • [13] Li, S., Stock, M., & Schlamminger, S. (2018). A new magnet design for future Kibble balances. Metrologia, 55(3), 319-325. https://doi.org/10.1088/1681-7575/aab2ea
  • [14] Bielsa, F., Lu, Y. F., Lavergne, T., Kiss, A., Fang, H., & Stock, M. (2015). Alignment of the magnetic circuit of the BIPM watt balance. Metrologia, 52(6), 775-782. https://doi.org/10.1088/0026-1394/52/6/775
  • [15] Seifert, F., Panna, A., Li, S., Han, B., Chao, L., Cao, A., Haddad, D., Choi, H., Haley, L., & Schlamminger, S. (2014). Construction, measurement, shimming, and performance of the NIST-4 magnet system. IEEE Transactions on Instrumentation and Measurement, 63(12), 3027-3038. https://doi.org/10.1109/TIM.2014.2323138
  • [16] Baumann, H., Eichenberger, A., Cosandier, F., Jeckelmann, B., Clavel, R., Reber, D., & Tommasini, D. (2013). Design of the new METAS watt balance experiment Mark II. Metrologia, 50(3), 235. https://doi.org/10.1088/0026-1394/50/3/235
  • [17] Kim, D., Woo, B. C., Lee, K. C., Choi, K. B., Kim, J. A., Kim, J. W., & Kim, J. (2014). Design of the KRISS watt balance. Metrologia, 51(2), S96. https://doi.org/10.1088/0026-1394/51/2/S96
  • [18] Li, S., Bielsa, F., Stock, M., Kiss, A., & Fang, H. (2017). A permanent magnet system for Kibble balances. Metrologia, 54(5), 775. https://doi.org/10.1088/1681-7575/aa71db
  • [19] Schlamminger, S. (2012). Design of the permanent-magnet system for NIST-4. IEEE Transactions on Instrumentation and Measurement, 62(6), 1524-1530. https://doi.org/10.1109/TIM.2012.2230771
  • [20] Solecki, M., Szumiata, T., & Rucki, M. (2021). A novel automatic mass comparator with a resolution of 10 ng for calibration of masses below 2 mg. Precision Engineering, 72, 576-582. https://doi.org/10.1016/j.precisioneng.2021.07.006
  • [21] Tommasini, D., Baumann, H., Eichenberger, A., & Vorotszhov, A. (2016). The ultra-stable magnet of the Mark II experiment. IEEE Transactions on Applied Superconductivity, 26(4), 1-5. https://doi.org/10.1109/TASC.2016.2521432
  • [22] Li, S., Zhang, Z., & Han, B. (2013). Nonlinear magnetic error evaluation of a two-mode watt balance experiment. Metrologia, 50(5), 482. https://doi.org/10.1088/0026-1394/50/5/482
  • [23] Marangoni, R. R., Haddad, D., Seifert, F., Chao, L. S., Newell, D. B., & Schlamminger, S. (2019). Magnet system for the quantum electromechanical metrology suite. IEEE Transactions on Instrumentation and Measurement, 69(8), 5736-5744. https://doi.org/10.1109/TIM.2019.2959852
  • [24] Li, S., Schlamminger, S., & Wang, Q. (2020). A simple improvement for permanent magnet systems for Kibble balances: More flat field at almost no cost. IEEE Transactions on Instrumentation and Measurement, 69(10), 7752-7760. https://doi.org/10.1109/TIM.2020.2981983
  • [25] Li, S., & Schlamminger, S. (2022). The irony of the magnet system for Kibble balances - a Review. Metrologia, 59(2), 022001. https://doi.org/10.1088/1681-7575/ac464a
  • [26] Li, S., Zhao, W., & Huang, S. (2016). A discussion of Bl conservation on a two dimensional magnetic field plane in watt balances. Measurement Science and Technology, 27(5), 051001. https://doi.org/10.1088/0957-0233/27/5/051001
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-21d4a16a-9b41-47ba-9807-eaea25ad8200
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.