PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Lightweight particleboards - manufacturing modification using a blowing agent from the group of bicarbonates

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Lightweight particleboards - manufacturing modification using a blowing agent from the group of bicarbonates. Although the low-density particleboards have grown in popularity, due to their facilitated transportation and a lower mass in the assembled finished products, there is still certain constraints in their use caused by limited mechanical properties. These obstacles may be overcome by the mechanism of foaming the polymers that bind wood particles in the boards’ structure. The aim of this study was to determine the possibility of using sodium bicarbonate as a blowing agent of phenolic resin used for bonding wood particles in the technology of lightweight particleboards. It was found that the addition of sodium bicarbonate in the amount of 5% in relation to the dry weight of the phenolic resin significantly increase the internal bond strength of the manufactured particleboards.
PL
łyty wiórowe o obniżonej gęstości - modyfikacja wytwarzania przy użyciu poroforu z grupy wodorowęglanów. Pomimo tego, że płyty wiórowe o obniżonej gęstości zyskują na popularności, ze względu na ułatwiony transport i niższą masę gotowych produktów, nadal istnieją pewne utrudnienia w ich zastosowaniu, spowodowane niedostatecznymi właściwościami mechanicznymi. Ograniczenia te mogą zostać zminimalizowane dzięki zastosowaniu mechanizmu spieniania żywicy wiążącej cząstki drewna w płytach wiórowych. Celem pracy było określenie możliwości zastosowania wodorowęglanu sodu jako poroforu żywicy fenolowej stosowanej do zaklejenia cząstek drewna w technologii lekkich płyt wiórowych. Stwierdzono, że dodatek wodorowęglanu sodu w ilości 5% w stosunku do suchej masy żywicy fenolowej istotnie zwiększa wytrzymałość na rozciąganie prostopadle do płaszczyzny płyty w wytworzonym materiale.
Twórcy
  • Faculty of Wood Technology, Warsaw University of Life Sciences-SGGW
  • Department of Technology and Entrepreneurship in Wood Industry, Institute of Wood Science and Furniture, Warsaw University of Life Science-SGGW
Bibliografia
  • 1. BATTEGAZZORE, D., ALONGI, J., DURACCIO, D., FRACHE, A. 2017: All Natural High-Density Fiber- and Particleboards from Hemp Fibers or Rice Husk Particles. Journal of Polymers and the Environment, 26(4), pp.1652-1660.
  • 2. Bi, X., Huang, R. 2021: Preparation, morphology, FTIR and performance properties of foaming particleboard. Journal of Wood Science, 67(1).
  • 3. BOQUILLON, N., ELBEZ, G., SCHÖNFELD, U. 2004: Properties of wheat straw particleboards bonded with different types of resin, Journal of Wood Science, Journal of Wood Science, 50(3), pp.230-235.
  • 4. BORUSZEWSKI, P., BORYSIUK, P., MAMIŃSKI, M., CZECHOWSKA, J. 2016: Mat Compression Measurements During Low-Density Particleboard Manufacturing. BioResources, 11(3).
  • 5. BORYSIUK, P., JENCZYK-TOLLOCZKO, I., AURIGA, R., KORDZIKOWSKI, M. 2019: Sugar beet pulp as raw material for particleboard production. Industrial Crops and Products, 141, p.111829.
  • 6. European Committee for Standardization: 2014: CEN/TS16368 Lightweight Particleboards. Specifications.
  • 7. European Committee for Standardization: EN 319: Particleboards and fibreboards. Determination of tensile strength perpendicular to the plane of the board, 1999.
  • 8. European Committee for Standardization: EN 317: Particleboards and fibreboards. Determination of swelling in thickness after immersion in water, 1999.
  • 9. European Committee for Standardization: EN 310: Wood-based Panels. Determination of modulus of elasticity in bending and of bending strength, 1994.
  • 10. European Committee for Standardization: EN 323: Wood-based panels - Determination of density, 1993.
  • 11. FAUZI, M.S., DU, N.U.L., OSMAN, H., A. GHANI, S. 2015: Effect of Sodium Bicarbonate as Blowing Agent on Production of Epoxy Shape Memory Foam using Aqueous Processing Method. Sains Malaysiana, 44(6), pp.869-874.
  • 12. HU, L., WANG, J., QIN, L., XU, H.,YANG, Z. 2021: Foaming performance and bonding strength of a novel urea-formaldehyde foaming resin facilely prepared with thermo-expandable microspheres. International Journal of Adhesion and Adhesives, 105, p.102783.
  • 13. HUANG, T.H., WANG, J.F., SONG, L.H., LEI, F.J., LUAN, J. 2021: The effect of Azodicarbonamide blowing agent on the properties of urea-formaldehyde resin. China For Prod Ind 58, pp.12-15.
  • 14. JIN, F., ZHAO, M., PARK, M., PARK, S. 2019: Recent Trends of Foaming in Polymer Processing: A Review, Polymers, Polymers, 11(6), p. 953.
  • 15. KHANJANZADEH, H., BAHMANI, A., RAFIGHI, A., TABARSA, T. 2012. Utilization of bio-waste cotton (Gossypium hirsutum L.) stalks and underutilized paulownia (paulownia fortunie) in wood-based composite particleboard. AFRICAN JOURNAL OF BIOTECHNOLOGY, 11, pp.8045-8050.
  • 16. MIRSKI, R., BORUSZEWSKI, P., TROCIŃSKI, A., DZIURKA, D. 2017: The Possibility to Use Long Fibres from Fast Growing Hemp (Cannabis sativa L.) for the Production of Boards for the Building and Furniture Industry. BioResources, 12(2).
  • 17. NAJIB, N., ARIFF, Z., MANAN, N., BAKAR, A., SIPAUT, C. 2009: Effect of Blowing Agent Concentration on Cell Morphology and Impact Properties of Natural Rubber Foam. Journal of Physical Science, 20.
  • 18. PAWLAK D., BORUSZEWSKI P. 2018: Influence of addition of microfibrillated cellulose (MFC) on selected properties of low-density particleboard. Annals of Warsaw University of Life Sciences - SGGW, Forestry and Wood Technology, 102, pp.139-148.
  • 19. PAWLAK D., JENCZYK-TOŁŁOCZKO I., BORUSZEWSKI P. 2018: Analysis of selected properties of particleboard modified with Miscanthus giganetus JM Greef & Deuter ex Hodk. & Renvoize, Annals of Warsaw University of Life Sciences - SGGW, Forestry and Wood Technology, 102, pp.149-156.
  • 20. PAZIO B., BORUSZEWSKI P. 2020: Analysis of the influence of larch fibers and particles on selected properties of fiber- and particleboards. Annals of Warsaw University of Life Sciences - SGGW, Forestry and Wood Technology, 111, pp.43-52.
  • 21. PISHAN, S., GHOFRANI, M., KERMANIAN, H. 2014: Study on Mechanical Properties of Lightweight Panels Made of Honeycomb and Polyurethane Cores.
  • 22. RAMOS, A., BRIGA-SÁ, A., PEREIRA, S., CORREIA, M., PINTO, J., BENTES, I., TEIXEIRA, C.A. 2021: Thermal performance and life cycle assessment of corn cob particleboards. Journal of Building Engineering, 44, p.102998.
  • 23. SADIK, T., PILLON, C., CARROT, C., REGLERO RUIZ, J. 2018: Dsc studies on the decomposition of chemical blowing agents based on citric acid and sodium bicarbonate. Thermochimica Acta, 659, pp.74-81.
  • 24. SHALBAFAN, A., LUEDTKE, J., WELLING, J., FRUEHWALD, A. 2021: Physiomechanical properties of ultra-lightweight foam core particleboard: different core densities. Holzforschung, Vol. 67, 2, pp.169-175.
  • 25. SMARDZEWSKI, J. 2019: Experimental and numerical analysis of wooden sandwich panels with an auxetic core and oval cells. Materials & Design, 183, p.108159.
  • 26. ZHAO, C.H., HONG, Z.L., WANG, X.P. 1995: Preliminary study on phenolic light particleboard. China For Prod Ind, 6, pp.7-9.
  • 27. WYPYCH, G. 2017: Handbook of foaming and blowing agents. Toronto: Chemtec Publishing.
  • 28. ZARAZIŃSKI, K., BORUSZEWSKI, P. 2020: Analysis of the influence of particle and poplar fibres share on selected properties of particle-fibre boards. Annals of Warsaw University of Life Sciences - SGGW Forestry and Wood Technology, 112, pp.22-31.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-21c23122-2e3b-4818-9065-a40738a0c5b5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.