Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A set D of vertices of a graph G = (VG, EG) is a dominating set of G if every vertex in VG — D is adjacent to at least one vertex in D. The domination number (upper domination number, respectively) of G, denoted by [formula], respectively), is the cardinality of a smallest (largest minimal, respectively) dominating set of G. A subset D ⊆ VG is called a certified dominating set of G if D is a dominating set of G and every vertex in D has either zero or at least two neighbors in VG — D. The cardinality of a smallest (largest minimal, respectively) certified dominating set of G is called the certified (upper certified, respectively) domination number of G and is denoted by [formula]), respectively). In this paper relations between domination, upper domination, certified domination and upper certified domination numbers of a graph are studied.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
815--827
Opis fizyczny
Bibliogr. 8 poz.
Twórcy
autor
- Gdańsk University of Technology Gabriela Narutowicza 11/12 80-233 Gdańsk, Poland
autor
- Gdańsk University of Technology Gabriela Narutowicza 11/12 80-233 Gdańsk, Poland
autor
- University of Gdańsk Wita Stwosza 57 80-308 Gdańsk, Poland
autor
- University of Gdańsk Wita Stwosza 57 80-308 Gdańsk, Poland
autor
- University of Gdańsk Wita Stwosza 57 80-308 Gdańsk, Poland
autor
- University of Gdańsk Wita Stwosza 57 80-308 Gdańsk, Poland
Bibliografia
- [1] G.A. Cheston, G. Fricke, Classes of graphs for which upper fractional domination equals independence, upper domination, and upper irredundance, Discrete Appl. Math. 55 (1994), 241-258.
- [2] M. Dettlaff, M. Lemańska, J. Topp, R. Ziemann, P. Żyliński, Certified domination, AKCE Int. J. Graphs Comb., to appear, doi:10.1016/j.akcej.2018.09.004.
- [3] M. Fischermann, Block graphs with unique minimum dominating sets, Discrete Math. 240 (2001), 247-251.
- [4] R. Frucht, F. Harary, On the corona of two graphs, Aequ. Math. 4 (1970), 322-324.
- [5] G. Gunther, B. Hartnell, L.R. Markus, D. Rail, Graphs with unique minimum dominating sets, Congr. Numer. 101 (1994), 55-63.
- [6] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Domination in Graphs: Advanced Topics, Marcel Dekker, New York, 1998.
- [7] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
- [8] M.A. Henning, A. Yeo, Total Domination in Graphs, Springer-Verlag, New York, 2013.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-21c186ca-0154-4e95-bd52-445df9325d62