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Abstract 
 

One of the most important applications of spatial data regards the ability to inform decision makers on spatially 

distributed and disaggregated hazards and risks, thus enhancing strategic decision making on how to manage 

and limit risks for a given area or region and prioritize investments. However, a full risk based adaptation 

assessment inside a Geographical Information System (GIS) can be cumbersome, since some complex tasks 

cannot be carried out directly. One example of these tasks involves Bayesian probabilistic analysis and decision 

making, which is a fundamental component of risk analysis, yet requires dedicated tools/software which usually 

do not belong to a standard GIS portfolio. For this reason, exploring the various capabilities of a GIS platform 

in connection with a Bayesian Network (BN) software is essential. The objective is to have an effective tool for 

knowledge representation and reasoning under the influence of uncertainty that can be displayed in a spatial 

manner. A case study using this tool was performed to assess the risk levels faced by the electrical distribution 

system of Long Island because of storm events as the Sandy Storm. 

 

1. Introduction 
 

Recently, Geographical Information Systems (GIS) 

has become an integral part of modeling risk, as it 

allows calculating a hazard extent using its intensity 

parameters and a digital elevation model. An 

important reason to use GIS in a risk assessment is 

that many regions and locations are exposed to 

several types of hazards, each with its own (spatial) 

characteristics. Nowadays GIS is an integrated, well-

established and effective tool in disaster risk 

management. Risk assessments can be carried out at 

different degrees of resolution, ranging from the 

global scale to the regional and community level, 

each level with its own objectives and spatial data 

requirements ‎ [11]. Moreover, GIS is a popular tool 

for storing, analyzing and visualizing geographic 

data, and as such a natural fit for a probabilistic 

representation of uncertainties, arising from 

stochastic natural processes and events, imprecise 

environmental information, and imprecise expert 

judgments. 

However, in some cases a full risk assessment and 

analysis in a pure GIS environment can be 

cumbersome, since some intertwined complex tasks 

cannot be carried out directly. One notable example 

of these tasks regards Bayesian probabilistic analysis 

and decision making, which is a fundamental 

component of risk analysis, yet requires dedicated 

tools/software which usually do not belong to a 

standard GIS portfolio.  For this and other reasons, 

DNV GL Strategic Research and Innovation has 

worked in and is still exploring the various 

capabilities offered by an integration of a GIS 

platform with a Bayesian Network (BN) software. 

The objective is to have an effective tool for 

knowledge representation and reasoning under the 

influence of uncertainty that can be displayed in a 

spatial manner (Figure 1).  

Another reason for linking these two technologies is 

that BNs and influence diagrams have been widely 

used for supporting decision making under 

uncertainty. Because BNs can present 

interdependencies among random variables, this has 
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great potential for natural hazard assessment.  BNs 

provide a complete suite of algorithms for the 

probabilistic and decisional aspects of a problem at 

hand; furthermore, they are easy to visualize and 

inspect and enhance modeling transparency. In 

addition, the integration of the probabilistic approach 

into a GIS allows quantifying and visualizing 

uncertainties in a spatially explicit manner. Such 

maps allow expressing confidence in the model 

results and visualizing its geographical variation 

while identifying the variables causing large 

uncertainties in the results. By explicitly addressing 

these uncertainties, the BN approach allows 

quantifying their effects and facilitates identifying 

where future model improvements and data 

collection efforts should be concentrated. 

 

 
 

Figure 1. Toolboxes created in a GIS environment 

 

As one critical infrastructure, the power grid is 

increasingly demanding efficient GIS data and 

system driven by the following factors: 

• Our society is more and more dependent on 

access to reliable and affordable electric power 

supply due to improved living quality and 

increased information connectivity. This 

dependency became even more apparent during 

extreme weather conditions where the mobility 

was strongly limited and certain critical 

infrastructures (including power grid) were 

significantly weakened ‎[7].  

• In addition to that, the shift to non-fossil based 

power generation implies increased penetration of 

renewable power resources into the power grid ‎ 

[3]. Unlike the conventional generations 

(Thermal, Hydra, and Nuclear), these new power 

sources tend to be highly variable and dependent 

a lot on the local weather conditions. 

Furthermore, they are often distributed over large 

geographic spans. 

• In certain regions of the world, the power grid 

assets are aging and new transmission and 

distribution infrastructures are difficult to build 

due to the lack of public acceptance. The system 

operators need to manage the grids with such 

aging assets in an efficient way, which makes the 

access to geographic related information 

(weather, geophysics, etc.) of paramount 

importance. 

 

2. Methodology 
 

The methods employed in the present analysis rests 

upon the classic computational architectures of BNs 

and GIS. In the present paper no detailed description 

of these two architectures is given and the interested 

reader is redirected to the plentiful literature 

available, see for instance ‎[1] and ‎[5] for BNs and ‎[4] 

for GIS, among others. For the purpose of the present 

treatment it is sufficient to note that BNs and GIS 

answer two markedly different modelling needs. BNs 

offer capabilities for uncertainty modelling and 

decision making under uncertainty which are 

formally consistent with Bayesian probability theory 

and the Utilitarian principles to decision making. Use 

of the BN’s features in risk analyses is well 

documented; see for instance ‎ [12] for a review of 

this field. GIS offers a platform for the storage of 

spatial datasets which are used in the modelling of 

geographically distributed problems and contexts. 

The integration between these two systems was 

carried out based on the possibilities offered by the 

C++ dynamic libraries made available by the 

developers of the employed BNs software, Genie and 

Smile from the University of Pittsburgh, see ‎ [2], and 

the python environment of the employed GIS 

software, QGIS ‎ [10]. The SMILE dynamic libraries 

were exposed to .NET wrappers, which were in turn 

imported in the QGIS Python environment. In 

essence, this enables the software to communicate 

via the Python environment and share data. Through 

this set up, the GIS platform shares relevant variables 

for the risk analysis, such as topography and the 

environment processes of interest, and these are 

processed by the BN which, in turn, returns the 

required probabilistic assessment to the GIS 
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platform. Such concept is not novel, as previous 

implementations have been pioneered before‎ [6]. 

Whilst the information contained in a GIS platform is 

fundamental in modelling the spatial characteristics 

of flooding and of the exposed infrastructure, risk-

analytical models are needed to estimate damages 

and risks under different flooding scenarios. These 

models usually do not belong to a standard GIS suite 

and need to be integrated as external applications. 

One powerful example of a risk-based assessment 

tool is the BN model, which enables a probabilistic 

representation of hazards and offers methods to 

support decision making under uncertainty. 

 

3. Case study: Sandy Storm 
 

3.1. Short description of storm Sandy 
 

Superstorm Sandy made landfall in the U.S. at 

around 8 p.m. of October 29, 2012 at New Jersey, 

with winds of 130 km/h.  The storm took 286 lives 

and caused more than $68 billion dollars in property 

damage. While moving north-easterly, paralleling the 

Gulf Stream and still with hurricane status, Sandy 

experienced an “extra tropical transition”, this means 

“outside the tropics” or in this case, off the Gulf 

Coast of the US mainland.  When tropical storms 

undergo this transition, the storm characteristics 

change.  Tropical cyclones shift from a warm-core to 

a cold-core, but this transition isn’t necessarily 

smooth, and while Sandy was still a hurricane with a 

warm core- albeit smaller- the storm’s outer edges 

took on characteristics of an extra-tropical cyclone -

.e.g., the intersection of a warm and a cold front, 

with cool air wrapping around the warm core, likely 

intensifying its low-level winds. A vast wind field 

emerged, with hurricane force winds along the small, 

central core; and a second maximum of high winds 

well to the north, with outer wind bands moving into 

Long Island and New York City, with winds nearing 

90 mph as far north as Rhode Island. Superstorm 

Sandy also made landfall during high tide, making it 

even more catastrophic.  The extreme winds 

combined with the high tide created some of the 

greatest sea-level heights ever recorded in many 

regions along the coast. The storm surge levels 

measured at The Battery in Lower Manhattan were 

the highest ever recorded at that location, nearly five 

feet above any previously measured value. This 

storm surge meant that considerable amounts of 

electric infrastructure near the coast was inundated; 

while inland, high precipitation in the form of both 

rain and snow wreaked havoc on the power 

distribution system. 

Sandy was a hard hit for electrical infrastructure of 

the United States.  The storm left more than 8.66 

million customers without power. Among coastal 

states, 69 power plants and 102 electric substations 

were located in areas flooded due to storm tides. In 

the Long Island Power Authority’s (LIPA) service 

territory, damage occurred to 50 substations, 2,100 

transformers, and 4,500 utility poles, and it took days 

and in some cases weeks or longer, to restore power 

to customers. Jersey Central Power & Light cut 

65,000 trees to help restore power, fixed 34,000 

downed wires and put up 6,700 new utility poles.  In 

New York, Consolidated Edison has strung 60 miles 

of new electrical cable as a result of the storm ‎[9].  

Restoration efforts were high, with workers clocking 

16 hour shifts to respond to 1.3 million reported 

power outages.  All in all, more than 70,000 linemen 

and technicians were called in from 30 states and 

Canada to restore power.  Utility workers treated as 

“first responders”, which granted utility trucks 

priority access to emergency fuel supplies and other 

resources. 

 

3.2. Storm Surge and inland flood modelling  
 

A storm surge analysis was carried out in order to 

identify surge heights and the water column that will 

be available to analyse the spatial propagation of 

water on land, water depths and the final inundation 

extent.  An analysis of the track location in time, 

maximum wind speed, pressure drop, and the radius 

of maximum wind was carried out and were 

identified as the primary variables that drove the 

storm surge assessment. The storm surge was 

modelled with a dynamic numerical model that 

solves the non-linear shallow water equation with a 

finite differences algorithm. A computational domain 

of 6.5 km grid that covered a large of the Atlantic 

Ocean and Caribbean Sea was selected and a nested 

grid of 60m was used inside the impact area (where 

the hurricane made landfall). The GEBCO 

bathymetry was used as a basis and depth values 

were defined for every grid cell. To specify the wind 

forcing as a time-series for the hurricane’s space 

varying components, the hurricane track was 

specified into a grid with an explicit radius of 

maximum wind ‎ [13]. The resulting surge was 

validated against NOAA (National Oceanic and 

Atmospheric Administration) buoy measurements. 

The flooding extent of the Sandy storm was 

simulated departing from the values obtained at each 

grid cell from the storm surge analysis. The flooding 

assessment was performed with a volume 

conservation, 2.5-dimensional flood routing model 

that distributes the time-stage control over a system 

of grid elements.  The model governing equations are 

the continuity equation and the two-dimensional 

equations of motion (dynamic wave)  [8]. A grid of 

20 m resolution imposed over a digital terrain model 
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was defined inside the model and each was assigned 

a time-stage hydraulic control on unconfined 

floodplains. Multiple time-stage controls were 

introduced to the system for the inflow points and 

where distributed inside the computational domain.  

By setting the water stage at the surface, inflow to 

coastal areas was simulated with a discharge.  The 

model numerically routed the designed hydrograph 

while predicting the area of inundation and 

simulating the flood wave attenuation. As the flood 

wave moved over the floodplain, flow over adverse 

slopes, attenuation, ponding and backwater effects 

were also simulated.  In addition, the duration of the 

storm was modelled in real time. The resulting 

flooding extent compares well with observations 

over Long Island provided by FEMA (Figure 2 and 

Figure 3). 

 

 
 

Figure 2. The area of inundation caused by the 

Sandy Storm in Long Island is revealed in shaded 

color. 

 

 
 

Figure 3. Comparison of the results obtained of 

modelling and validated using the FEMA 

information. 

 

Based on this simulation and on geographical data of 

the substations within Long Island, we were able to 

match the substations that were reported flooded 

during the Sandy event.  Flood exposure maps were 

also generated with the purpose of displaying and 

assessing what other relevant infrastructures can be 

potentially threatened in the future.  These results 

can support decision making concerning flood 

protection and adaptation measures, as well as the 

creation of evacuation plans and emergency 

response. 

Based on this simulation and on geographical data of 

substations within Long Island, we were able to 

match the substations that were reported flooded 

during the Sandy event.  Flood exposure maps were 

also generated with the purpose of displaying and 

assessing what other relevant infrastructures can be 

potentially threatened in the future.  These results 

can support decision making concerning flood 

protection and adaptation measures, as well as the 

creation of evacuation plans and emergency 

response. 

 

3.3. Preliminary risk assessment of electricity 

infrastructures – power grid  
 

The analysis concludes with a risk-based 

quantification of flooding. As with any hazard, risk 

analysis is a necessary complement to the impact 

analysis illustrated earlier as it enables cost-benefit 

analysis of adaptation to climate extremes. By 

defining flooding-induced damages and losses to the 

electrical infrastructure in monetary terms, risk 

analysis offers a direct method to compare storm 

hardening costs with their benefits. In this context, 

benefits are intended as the reduction of future 

expected losses after the network is hardened. The 

final aim of such a risk-based assessment is to arrive 

at an optimal adaptation strategy among a possible 

portfolio of adaptation investments.  

The loss spectrum faced by utilities in the case of 

flooding is broad and particularly sensitive to the 

type of damage, the location of the damage, and the 

number of end users affected. Furthermore, the 

dynamics of flooding are highly dependent on local 

spatial features such as topography, terrain 

characteristics, land use and so forth.  These reasons 

motivates the integration of risk-analytical modules 

and a GIS platform, which stores and handles the 

relevant geographic variables of a region, including 

the types of infrastructure present, population density 

and size, etc. 

In this concluding step of the analysis, the concept of 

dynamically integrating BNs with GIS in risk 

analysis is explored. Here, the GIS provides the 

spatial inputs to the BNs module, which processes 

these inputs and return the risk levels at the location 

of interest.  These risk estimates are then returned to 

the GIS platform which displays them spatially.  

Linking the information in this manner offers a 

powerful tool for decision making under uncertainty. 

Since BNs can present interdependencies among 
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random variables that are used to describe real-world 

domains, this has a great potential for natural hazard 

and risk assessment. 

The concept is applied in the context of adaptation 

against flooding of distribution substations located 

within the Nassau and Suffolk counties, with one BN 

created (Figure 4).  For this demonstration, the 

damage analysis is modelled simply as a function of 

the flood height at the substation.  Owing to this, 

monetary damages are estimated to be linearly 

increasing with the water height at the substation 

location, whose value is provided by the GIS 

platform.  Furthermore, only raising the substation 

was considered as a possible adaptation measure.  

All these assumptions do not constitute a limit to the 

applicability of this tool, as more complex and 

realistic damage functions can be integrated and 

other adaptation measures such as flood proofing can 

be included and evaluated in the same network. 

 

 
 

Figure 4. Bayesian Network used for simulating the 

probability of flooding at each substation. 

 

 
 

Figure 5. Result of a risk thematic map obtained for 

the analysis. 

 

Using the developed application, the expected 

monetary loss due to flooding was estimated  

(see Figure 5). This figure shows the realized 

implementation returns, for each substation analyzed, 

main characteristics of the substation such as 

identifier and location, the expected loss due to 

flooding and the risk-optimal adaptation elevation.  

The monetary values displayed are only for 

illustration, as the damage function they are derived 

from is fictitious and serves only the purpose of 

demonstrating the concept. 

A BN model that consider the conditional parameters 

of the flooding event was implemented, see Figure 4. 

The model returns the probability of flooding of a 

substation at a given location. The BN models this 

probability as solely a function of the elevation of the 

site where the substation is located relative to the 

elevation of the surge. Once the height of the flood 

was calculated from the modelling, it is included 

inside a GIS platform and automatically processed 

by the Bayesian inference engine. The engine is 

called directly within the GIS via the Bayesian 

network software and the results are directly 

displayed on a map, see Figure 5. A display showing 

the probability of flood depending for the different 

substations considered is obtained. 

 

4. Conclusions and recommendations 
 

The BN and GIS interaction offers a powerful tool 

for decision making under uncertainty that can be 

used displayed in a spatial manner.  Since BNs can 

present interdependencies among random variables 

that are used to describe real-world domains, this has 

a great potential for natural hazard and risk 

assessment. 

The concept was applied in the context of adaptation 

against flooding of distribution substations located in 

Long Island.  At the present status of the analysis, the 

damage is modelled as a function of the flood height 

at the substation site.  Owing to this, monetary 

damages are estimated to be linearly proportional to 

the water height at the substation location, whose 

value is provided by the GIS platform.  Furthermore, 

raising the substations was considered as a possible 

adaptation measure.   

Using the developed application, the expected 

monetary loss due to flooding of the considered was 

estimated.  The realized implementation returns, for 

each substation analysed, main characteristics of the 

substation such as identifier and location, the 

expected loss due to flooding and the risk-optimal 

adaptation elevation.  In the future, more complex 

and realistic damage functions can be easily 

integrated and other adaptation measures such as 

flood proofing can be formally included and 

evaluated in the same network. 
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