PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on the characteristics of Klein–Cook parameter and diffraction efficiency of acousto-optic interaction for low-frequency ultrasonic in the liquid

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We have investigated the characteristics of acousto-optic interaction for low-frequency ultrasonic wave in a liquid. Based on the coupling wave equation of acousto-optic interaction, the diffraction light characteristics for normal incidence at small parameter Q have been discussed. The parameter Q with respect to acousto-optic interaction length, ultrasonic frequency, water temperature, and the concentration of sucrose solution have been analyzed, which is an important physical quantity and reflects the degree of mismatch in the acousto-optic interaction. The diffraction efficiencies for different parameters Q, incident angles and phase shifts have been calculated. The results of our work provide theoretical basis for further study of the acousto-optic effect in the liquid.
Czasopismo
Rocznik
Strony
445--456
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
autor
  • Hebei Key Laboratory of Microstructure Materials Physics, College of Science, Yanshan University, Qinhuangdao, Hebei 066004, China
autor
  • Mechanical and Electrical Engineering Department, Hebei Construction Material Vocational and Technical College, Qinhuangdao, Hebei 066004, China
  • College of Mechanical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
autor
  • Hebei Key Laboratory of Microstructure Materials Physics, College of Science, Yanshan University, Qinhuangdao, Hebei 066004, China
Bibliografia
  • [1] MYS O., KOSTYRKO M., KRUPYCH O., VLOKH R., Anisotropy of the acousto-optic figure of merit for LiNbO3 crystals: isotropic diffraction, Applied Optics 54(27), 2015, pp. 8176–8186, DOI: 10.1364/AO.54.008176.
  • [2] WENG C., HE Y., Acousto-optic interaction in Raman–Nath acousto-optic diffraction, European Physical Journal D 73(1), 2019, p. 1, DOI: 10.1140/epjd/e2018-90122-y.
  • [3] KLEIN W.R., COOK B.D., Unified approach to ultrasonic light diffraction, IEEE Transactions on Sonics and Ultrasonics 14(3), 1967, pp. 123–134, DOI: 10.1109/T-SU.1967.29423.
  • [4] YUSHKOV K.B., MOLCHANOV V.Y., Hyperspectral imaging acousto-optic system with spatial filtering for optical phase visualization, Journal of Biomedical Optics 22(6), 2017, article 066017, DOI: 10.1117/1.JBO.22.6.066017.
  • [5] POLSCHIKOVA O.V., MACHIKHIN A.S., RAMAZANOVA A.G., BRATCHENKO I.A., POZHAR V.E., DANILYCHEVA I.V., KATUNINA O.R., DANILYCHEV M.V., An acousto-optic hyperspectral unit for histological study of microscopic objects, Optics and Spectroscopy 125(6), 2018, pp. 1074–1080, DOI: 10.1134/S0030400X19020188.
  • [6] ANTONOV S.N., Acousto-optic deflector with heat removal from the piezotransducer by sound insulation of a heat radiator, Acoustical Physics 65(5), 2019, pp. 487–494, DOI: 10.1134/S1063771019050038.
  • [7] FAN Z., WEN Y., SHI X., WU C.T., CHEN X.Y., JIANG Y., DAI T.Y., LD double-end pumped dual-rod acousto-optic Q-switched Tm:LuAG laser, Infrared Physics and Technology 102, 2019, article 103022, DOI: 10.1016/j.infrared.2019.103022.
  • [8] NIKITIN P.A., GERASIMOV V.V., VOLOSHINOV V.B., Acousto-optic modulation of terahertz radiation in liquefied sulfur hexafluoride at room temperature, Journal of Infrared, Millimeter, and Terahertz Waves 41, 2020, pp. 299–306, DOI: 10.1007/s10762-019-00660-7.
  • [9] WINDELS F.W., LEROY O., The acousto-optical interaction of narrow laser beams under Raman–Nath conditions, Journal of Optics A: Pure and Applied Optics 3(4), 2001, pp. S12–S17, DOI: 10.1088/1464-4258/3/4/353.
  • [10] BOGDAN O.V., PAVLENKO V.K., PASHKEVICH G.A., SHKADAREVICH A.P., Acousto-optical analyzers of microwave broadband spectrum, 2013 23rd International Crimean Conference “Microwave & Telecommunication Technology”, September 8–14, 2013, Sevastopol, Ukraine, pp. 940–941.
  • [11] FERRIA K., LAOUAR N., BOUAOUADJA N., Acousto-optic method for liquids refractometry, Optica Applicata 41(1), 2011, pp. 109–119.
  • [12] FERRIA K., GRIANI L., LAOUAR N., Acousto-optic method for quality control of water mixed with miscible liquids, Optics and Laser Technology 49, 2013, pp. 51–55, DOI: 10.1016/j.optlastec.2012.11.034.
  • [13] XUE B., WANG Z., ZHANG K., ZHANG H, CHEN Y., JIA L., WU H., ZHAI J., Direct measurement of the sound velocity in seawater based on the pulsed acousto-optic effect between the frequency comb and the ultrasonic pulse, Optics Express 26(17), 2018, pp. 21849–21860, DOI: 10.1364/OE.26.021849.
  • [14] GIULIANO G., KENT L.W.J., LAYCOCK L.C., Underwater wireless acousto-optic waveguide (UWAOW), Proceedings of SPIE 10437, 2017, article 1043708, DOI: 10.1117/12.2286318.
  • [15] KWIEK P., Diffraction of collinear correlated photon pairs by an ultrasonic wave within Raman–Nath and intermediate region, Ultrasonics 57, 2015, pp. 153–158, DOI: 10.1016/j.ultras.2014.11.005.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-21bd0232-6702-4ee3-b854-507f2da6c796
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.