PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dynamic load identification for structural health monitoring

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This book deals with the inverse problem of identification of dynamic loads and its applications for low frequency structural health monitoring (SHM). It collects and unifies the work performed by the author within the framework of three research projects either alone or together with the three Ph.D. students under his supervision or co-supervision. In particular: - The inverse linear problem of load identification is discussed in the practically important case of limited instrumentation. Various techniques for augmenting the missing information are described together with three complementary quantitative measures of optimum sensor placement. - A method for identification of dynamic loads in elastoplastic structures is developed, including sensitivity analysis of the response and gradient-based optimization. - The general methodology of the virtual distortion method (VDM) is used to represent various SHM problems in terms of a load identification problem. This includes - A methodology for virtual isolation of substructures for the purpose of local SHM. - A model-free (nonparametric and based on purely experimental data) methodology for identification of structural damages, modifications and inelastic impacts. - A unified approach to the problem of simultaneous identification of unknown excitations and structural damages. All presented approaches are tested and illustrated in numerical examples that use a realistic numerical noise level of at least 5% rms. Depending on laboratory constraints, experimental verification is performed in selected cases.
Rocznik
Tom
Strony
1--280
Opis fizyczny
Bibliogr. 294 poz.
Twórcy
  • Institute of Fundamental Technological Research Polish Academy od Sciences
Bibliografia
  • 1. L. Ambrozinski, T. Stepinski, P. Packo, and T. Uhl. Self-focusing lamb waves based on the decomposition of the time-reversal operator using time-frequency representation. Mechanical Systems and Signal Processing, 27:337-349, 2012.
  • 2. P.C. Chang and S.C. Liu. Recent research in nondestructive evaluation of civil infrastructures. Journal of Materials in Civil Engineering, 15(3):298-304, 2003.
  • 3. W. Ostachowicz, P. Kudela, P. Malinowski, and T. Wandowski. Damage localisation in plate-like structures based on pzt sensors. Mechanical Systems and Signal Processing, 23(6):1805-1829, 2009.
  • 4. W. J. Staszewski. Structural health monitoring using guided ultrasonic waves. In J. Holnicki-Szulc and C. A. Mota Soares, editors, Advances in Smart Technologies in Structural Engineering, pages 117-162. Springer, 2003.
  • 5. T. Wandowski, P. Kudela, P. Malinowski, and W. Ostachowicz. Lamb waves for damage localisation in panels. Strain, 47(5):449-457, 2011.
  • 6. A. Zak, M. Radzieñski, M. Krawczuk, and W. Ostachowicz. Damage detection strategies based on propagation of guided elastic waves. Smart Materials and Structures, 21(3):035024, 2012.
  • 7. K. K. Nair, A. S. Kiremidjian, and K. H. Law. Time series-based damage detection and localization algorithm with application to the ASCE benchmark structure. Journal of Sound and Vibration, 291(1-2):349-368, March 2006.
  • 8. S. Silva, M. Dias Júnior, and V. Lopes Jr. Structural health monitoring in smart structures through time series analysis. Structural Health Monitoring, 7(3):231-244, 2008.
  • 9. M.I. Friswell. Damage identification using inverse methods. Philosophical Transactions of the Royal Society A, 365(1851):393-410, 2007.
  • 10. G. Yan. Structural damage indentification methods based on generalized flexibility matrix and wavelet analysis. PhD thesis, School of Civil Engineering, Harbin Institute of Technology, China, 2006.
  • 11. E.P. Carden and P. Fanning. Vibration based condition monitoring: A review. Structural Health Monitoring, 3(4):355-377, 2004.
  • 12. P.C. Chang, A. Flatau, and S.C. Liu. Review paper: Health monitoring of civil infrastructure. Structural Health Monitoring, 2(3):257-267, 2003.
  • 13. K. Worden and J.M. Dulieu-Barton. An overview of intelligent fault detection in systems and structures. Structural Health Monitoring, 3(1):85-98, 2004.
  • 14. P. Kołakowski. Structural health monitoring — a review with the emphasis on low-frequency methods. Engineering Transactions, 55(3):239-275, 2007.
  • 15. S.W. Doebling, C.R. Farrar, and M.B. Prime. A summary review of vibration-based damage identification methods. The Shock and Vibration Digest, 30(2):91-105, March 1998.
  • 16. S.W. Doebling, C.R. Farrar, M.B. Prime, and D.W. Shevitz. Damage identification and health monitoring of structural and mechanical systems from changes in their vibration characteristics: A literature review. Technical Report LA-13070-MS, Los Alamos National Laboratory, Los Alamos, N.M., 1996.
  • 17. T. Uhl and K. Mendrok. Overview of modal model based damage detection methods. In Proc. of the Int'l Conf. on Noise and Vibration Engineering (ISMA2004), pages 561-575, Leuven, Belgium, 20-22 September 2004.
  • 18. Z. Wei, L. H. Yam, and L. Cheng. NARMAX model representation and its application to damage detection for multi-layer composites. Composite Structures, 68(1):109-117, April 2005.
  • 19. M.I. Friswell and J.E. Mottershead. Finite element model updating in structural dynamics. Kluwer Academic Publishers, 1995.
  • 20. J.E. Mottershead and M.I. Friswell. Model updating in structural dynamics: A survey. Journal of Sound and Vibration, 167(2):347-375, 1993.
  • 21. A. Garstecki, A. Knitter-Piaiątkowska, Z. Pozorski, and K. Ziopaja. Damage detection using parameter dependent dynamic experiments and wavelet transformation. Journal of Civil Engineering and Management, 10(3):191-197, 2004.
  • 22. H. Kim and H. Melhem. Damage detection of structures by wavelet analysis. Engineering Structures, 26(3):347-362, 2004.
  • 23. Z.K. Peng and F.L. Chu. Application of the wavelet transform in machine condition monitoring and fault diagnostics: a review with bibliography. Mechanical Systems and Signal Processing, 18(2):199-221, 2004.
  • 24. M. Rucka and K. Wilde. Application of continuous wavelet transform in vibration based damage detection method for beams and plates. Journal of Sound and Vibration, 297(3-5):536-550, 2006.
  • 25. M.M. Reda Taha, A. Noureldin, J.L. Lucero, and T.J. Baca. Wavelet transform for structural health monitoring: A compendium of uses and features. Structural Health Monitoring, 5(3):267-295, 2006.
  • 26. L. E. Mujica, J. Vehi, W. Staszewski, and K. Worden. Impact damage detection in aircraft composites using knowledge-based reasoning. Structural Health Monitoring, 7(3):215-230, 2008.
  • 27. P. Kołakowski, M. Wikło, and J. Holnicki-Szulc. The virtual distortion method — a versatile reanalysis tool for structures and systems. Structural and Multidisciplinary Optimization, 36(3):217-234, 2008.
  • 28. J. Holnicki-Szulc and J. Gierliński. Structural Analysis, Design and Control by the Virtual Distortion Method. John Wiley & Sons Ltd, Chichester, 1995.
  • 29. G. Suwała and Ł. Jankowski. A model-free method for identification of mass modifications. Structural Control and Health Monitoring, 19(2):216- 230, 2012.
  • 30. G. Suwała and Ł. Jankowski. Model-free damage identification of skeletal structures. In Proc. of the 5th European Workshop on Structural Health Monitoring (EWSHM 2010), pages 925-930, Sorrento, Italy, June 29 - July 2 2010.
  • 31. MeroForm System USA. M12 system, component catalogue. http://www. meroform.us/pdf/m12.pdf, 2006. online, retrieved April 2011.
  • 32. Ł. Jankowski. Off-line identification of dynamic loads. Structural and Multidisciplinary Optimization, 37(6):609-623, 2009.
  • 33. Ł. Jankowski, K. Sekuła, B. Błachowski, M. Wikło, and J. Holnicki-Szulc. Dynamic load monitoring. In J. Holnicki-Szulc, editor, Smart Technologies for Safety Engineering, chapter 4, pages 105-151. John Wiley & Sons, Chichester, 2008.
  • 34. Ł. Jankowski, M. Wikło, G.Suwała, and J. Holnicki-Szulc. Reconstruction of impact load on a roadway arch support (in polish). In Innovative and safe mechanisation systems for mineral exploitation (KOMTECH 2006), Zakopane, Poland, 14-16 November 2006.
  • 35. Ł. Jankowski, M. Wikło, and J. Holnicki-Szulc. Robust post-accident reconstruction of loading forces. Key Engineering Materials, 347:659-664, 2007.
  • 36. M. Wikło and Ł. Jankowski. A posteriori impact identification. In Proc. of the 3rd European Workshop on Structural Health Monitoring (EWSHM 2006), pages 675-682, Granada, Spain, 5-6 July 2006.
  • 37. M. Wikło, Ł. Jankowski, and J. Holnicki. Impact load identification— forensic engineering. In Proc. of the 2nd Int'l Conf. on Nonsmooth Non-convex Mechanics (NNMAE 2006), Thessaloniki, Greece, 7-8 July 2006.
  • 38. G. Suwała and Ł. Jankowski. Model-free identification of added mass. In Proc. of the 8th World Congress on Structural and Multidisciplinary Optimization (WCSMO-8), Lisbon, Portugal, June 1-5 2009.
  • 39. Q. Zhang, Ł. Jankowski, and Z. Duan. Simultaneous identification of moving mass and structural damage. In Proceedings of the 8th World Congress on Structural and Multidisciplinary Optimization (WCSMO-8), Lisbon, Portugal, July 2009.
  • 40. Q. Zhang, Ł. Jankowski, and Z. Duan. Simultaneous identification of moving masses and structural damage. Structural and Multidisciplinary Optimization, 42(6):907-922, 2010.
  • 41. G. Suwała and Ł. Jankowski. A model-less method impact mass identification. In Proc. of the Ąth European Workshop on Structural Health Monitoring (EWSHM 2008), pages 365-373, Kraków, Poland, July 2-4 2008.
  • 42. G. Suwała and Ł. Jankowski. A model-less method for added mass identification. Solid State Phenomena, 147-149:570-575, 2009.
  • 43. G. Suwała and Ł. Jankowski. A benchmark for identification of structural modifications and inelastic impacts: the structure, test data and an example solution. In Proceedings of the 5th ECCOMAS Thematic Conference on Smart Structures and Materials (SMART 2011), Saarbrücken, Germany, July 2011.
  • 44. G. Suwała and Ł. Jankowski. Experimental study of a model-free method for identification of stiffness-related structural damages. In Proc. of the 6th European Workshop on Structural Health Monitoring (EWSHM 2012), Dresden, Germany, 3-6 July 2012.
  • 45. G. Suwała and Ł. Jankowski. Model-free monitoring of structures. In Proc. of the ECCOMAS Thematic Conference: Int. Symposium on Inverse Problems in Mechanics of Structures and Materials (IPM 2013), Rzeszow-Baranow Sandomierski, Poland, 24-27 April 2013.
  • 46. J. Hou, L. Jankowski, and J. Ou. A substructure isolation method for local structural health monitoring. Structural Control & Health Monitoring, 18(6):601-618, 2011.
  • 47. J. Hou, L. Jankowski, and J. Ou. Experimental study of the substructure isolation method for local health monitoring. Structural Control & Health Monitoring, 19(4):491-510, 2012.
  • 48. J. Hou, L. Jankowski, and J. Ou. Substructural damage identification using local primary frequency. In Proc. of the 11th International Symposium on Structural Engineering (ISSE 11th), Guangzhou, China, 18-20 December 2010.
  • 49. J. Hou, L. Jankowski, and J. Ou. Substructural damage identification using time series of local measured response. In Proc. of the 5th World Conference on Structural Control and Monitoring (5WCSCM 2010), Tokyo, Japan, 12-14 July 2010.
  • 50. J. Hou, L. Jankowski, and J. Ou. Substructure isolation and identification using fft of measured local responses. In Proc. of the 5th European Workshop on Structural Health Monitoring (EWSHM 2010), pages 913¬918, Sorrento, Italy, 29 June - 2 July 2010.
  • 51. J. Hou, L. Jankowski, and J. Ou. Local damage identification in frequency domain based on substructure isolation method. In Proc. of the 6th Int'l Workshop on Advanced Smart Materials and Smart Structures Technology (ANCRiSST 2011), Dalian, China, 25-26 July 2011.
  • 52. J. Hou, L. Jankowski, and J. Ou. Large substructure identification using substructure isolation method. In Proc. SPIE 8345, page 83453V, 2012.
  • 53. J. Hou, L. Jankowski, and J. Ou. Substructure isolation method for online local damage identification using time series. In Proc. of the 6th European Workshop on Structural Health Monitoring (EWSHM 2012), Dresden, Germany, 3-6 July 2012.
  • 54. Q. Zhang, Z. Duan, and L. Jankowski. Moving mass identification based on virtual distortion method (in chinese). Journal of Vibration Engineering, 23(5):494-501, 2010.
  • 55. Q. Zhang, Z. Duan, and L. Jankowski. Moving mass identification of vehicle-bridge coupled system based on virtual distortion method (in chinese). Chinese Journal ofTheoretical and Applied Mechanics, 43(3):598- 610, 2011.
  • 56. Q. Zhang, Z. Duan, Ł. Jankowski, and F. Wang. Experimental validation of a fast dynamic load identification method based on load shape function (in chinese). Journal of Vibration and Shock, 30(9):98-102, 154, 2011.
  • 57. Q. Zhang, Ł. Jankowski, and Z. Duan. Identification of coexistent load and damage. Structural and Multidisciplinary Optimization, 41(2):243- 253, 2010.
  • 58. Q. Zhang, Ł. Jankowski, and Z. Duan. Damage identification using sub-structural virtual distortion method. In Proc. SPIE 8345, page 83453X, 2012.
  • 59. Q. Zhang, Ł. Jankowski, and Z. Duan. Identification of excitation time histories and parametrized structural damages. Mechanical Systems and Signal Processing, 33:56-68, 2012.
  • 60. Q. Zhang, Ł. Jankowski, and Z. Duan. Identification of coexistent load and damage based on virtual distortion method. In Proceedings of the 4th European Workshop on Structural Health Monitoring, pages 1121-1128, Kraków, Poland, July 2-4, 2008 2008.
  • 61. Q. Zhang, Ł. Jankowski, and Z. Duan. Fast identification of loads and damages using a limited number of sensors. In Proceedings of the 5th European Workshop on Structural Health Monitoring (EWSHM 2010), pages 1039-1044, Sorrento, Italy, 29 June - 2 July 2010.
  • 62. Q. Zhang, Ł. Jankowski, and Z. Duan. Experimental verification of a methodology for simultaneous identification of coexistent loads and damages. In Proceedings of the 8th International Conference on Condition Monitoring and Machinery Failure Prevention Technologies (CM/MFPT 2011), Cardiff, UK, June 20-22 2011.
  • 63. Z. Mróz and A. Garstecki. Optimal loading conditions in the design and identification of structures. part 1: Discrete formulation. Structural and Multidisciplinary Optimization, 29(1):1-18, 2005.
  • 64. P. Czop, K. Mendrok, and T. Uhl. Application of inverse linear parametric models in the identification of rail track irregularities. Archive of Applied Mechanics, 81(11):1541-1554, 2011.
  • 65. B.J. Dobson and E. Rider. A review of the indirect calculation of excitation forces from measured structural response data. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 204(2):69-75, 1990.
  • 66. H. Inoue, J. J. Harrigan, and S. R. Reid. Review of inverse analysis for indrect measurement of impact force. Applied Mechanics Reviews, 54(6):503-524, 2001.
  • 67. E. Jacquelin, A. Bennani, and P. Hamelin. Force reconstruction: analysis and regularization of a deconvolution problem. Journal of Sound and Vibration, 265(1):81-107, July 2003.
  • 68. M. Klinkov and C.-P. Fritzen. An updated comparison of the force reconstruction methods. Key Engineering Materials, 347:461-466, 2007.
  • 69. T. Uhl. The inverse identification problem and its technical application. Archive of Applied Mechanics, 77(5):325-337, May 2007.
  • 70. T. Uhl and K. Mendrok. Zastosowanie odwrotnego zadania identyfikacji do wyznaczania sił obciążających konstrukcje mechaniczne. Wydawnictwo Instytutu Technologii Eksploatacji (PIB), Kraków, 2005.
  • 71. L. Yu and T.H.T. Chan. Recent research on identification of moving loads on bridges. Journal of Sound and Vibration, 305(1-2):3-21, 2007.
  • 72. K. Mendrok. Inverse problem in structural health monitoring. Wydawnictwo Naukowe Instytutu Technologii Eksploatacji — PIB, Radom, 2010.
  • 73. R. Adams and J. F. Doyle. Multiple force identification for complex structures. Experimental Mechanics, 42(1):25-36, 2002.
  • 74. J.F. Doyle. Modern experimental stress analysis — completing the solution of partially specified problems. John Wiley & Sons Ltd, Chichester, 2004.
  • 75. P.E. Hollandsworth and H.R. Busby. Impact force identification using the general inverse technique. International Journal of Impact Engineering, 8(4):315-322, 1989.
  • 76. Z.R. Lu and S.S. Law. Force identification based on sensitivity in time domain. Journal of Engineering Mechanics (ASCE), 132(1):1050-1056, 2006.
  • 77. H. Inoue, H. Ishida, K. Kishimoto, and T. Shibuya. Measurement of impact load by using an inverse analysis technique: Comparison of methods for estimating the transfer function and its application to the instrumented charpy impact test. Japan Society of Mechanical Engineers International Journal, 34(4):453-458, 1991.
  • 78. K. Mendrok and T. Uhl. Load identification using a modified modal filter technique. Journal of Vibration and Control, 16(1):89-105, 2010.
  • 79. S. Ódeen and B. Lundberg. Prediction of impact force by impulse responses method. International Journal of Impact Engineering, 11(2):149-158, 1991.
  • 80. E. Parloo, P. Verboven, P. Guillaume, and M. Van Overmeire. Force identification by means of in-operation modal models. Journal of Sound and Vibration, 262(1):161-173, 2003.
  • 81. E. Parloo. Application of Frequency Domain System Identification Techniques in the Field of Operational Modal Analysis. PhD thesis, Vrije Uni-versiteit Brussel, May 2003.
  • 82. J. F. Doyle. A wavelet deconvolution method for impact force identification. Experimental mechanics, 37(4):403-408, 1997.
  • 83. J.-J. Liu, C.-K. Ma, I-C. Kung, and D.-C. Lin. Input force estimation of a cantilever plate by using a system identification technique. Computer Methods in Applied Mechanics and Engineering, 190:1309-1322, 2000.
  • 84. Q. P. Ha and H. Trinh. State and input simultaneous estimation for a class of nonlinear systems. Automatica, 40(10):1779-1785, 2004.
  • 85. M. Klinkov and C.-P. Fritzen. Online estimation of external loads from dynamic measurements. In Proceedings of the International Conference on Noise and Vibration Engineering (ISMA), pages 3957-3968, Leuven, Belgium, 2006.
  • 86. M. S. Allen and T. G. Carne. Comparison of inverse structural filter (ISF) and sum of weighted accelerations technique (SWAT) time domain force identification methods. In 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, May 2006.
  • 87. M. S. Allen and T. G. Carne. Delayed, multi-step inverse structural filter for robust force identification. Mechanical Systems and Signal Processing, 22(5):1036—-1054, 2008.
  • 88. D.C. Kammer. Input force reconstruction using a time domain technique. Journal of Vibration and Acoustics, 120(4):868-874, 1998.
  • 89. C.-K. Ma and C.-C. Ho. An inverse method for the estimation of input forces acting on non-linear structural systems. Journal of Sound and Vibration, 275:953-971, 2004.
  • 90. N. Davendralingam and J.F. Doyle. Nonlinear identification problems under large deflections. Experimental Mechanics, 48(4):529-538, 2008.
  • 91. L.E. Mujica. A hybrid approach of knowledge-based reasoning for structural assessment. PhD thesis, University of Girona, June 2006.
  • 92. J. C. Briggs and M.-K. Tse. Impact force identification using extracted modal parameters and pattern matching. International Journal of Impact Engineering, 12(3):361-372, 1992.
  • 93. X. Cao, Y. Sugiyamac, and Y. Mitsui. Application of artificial neural networks to load identification. Computers and Structures, 69:63-78, 1998.
  • 94. E. Wu, C.-Z. Tsai, and L.-H. Tseng. A deconvolution method for force reconstruction in rods under axial impact. Journal of Acoustical Society of America, 104(3):1418-1426, 1998.
  • 95. N. Hu and H. Fukunaga. A new approach for health monitoring of composite structures through identification of impact force. Journal of Advanced Science, 17(1-2):82-89, 2005.
  • 96. H. Fukunaga and N. Hu. Experimental impact force identification of composite structures. In Proc. of the 3rd European Workshop on Structural Health Monitoring (EWSHM 2006), pages 840-847, July 2006.
  • 97. L. Gaul and S. Hurlebaus. Identification of the impact location on a plate using wavelets. Mechanical Systems and System Processing, 12(6):783-795, 1997.
  • 98. M.T. Martin and J.F. Doyle. Impact force location in frame structures. International Journal of Impact Engineering, 18(1):79-97, 1996.
  • 99. S.S. Law and X.Q. Zhu. Bridge dynamic responses due to road surface roughness and braking of vehicle. Journal of Sound and Vibration, 282(3-5):805-830, 2005.
  • 100. X.Q. Zhu and S.S. Law. Identification of moving interaction forces with incomplete velocity information. Mechanical Systems and Signal Processing, 17(6):1349-1366, 2003.
  • 101. S.S. Law, T.H.T. Chan, and Q.H. Zeng. Moving force identification: a time domain method. Journal of Sound and vibration, 201(1):1-22, 1997.
  • 102. S.S. Law, T.H.T. Chan, and Q.H. Zeng. Moving force identification—A frequency and time domain analysis. Journal of Dynamic System, Measurement and Control, 121(3):394-401, 1999.
  • 103. T.H.T. Chan, S.S. Law, T.H. Yung, and X.R. Yuan. An interpretive method for moving force identification. Journal of Sound and Vibration, 219:503-524, 1999.
  • 104. T.H.T. Chan and C. O'Connor. Wheel loads from highway bridge strains: field studies. Journal of Structural Engineering, 116(7):1751-1771, 1990.
  • 105. S.S. Law, J.Q. Bu, X.Q. Zhu, and S.L. Chan. Vehicle axle loads identification using finite element method. Engineering Structures, 26(8):1143—-1153, 2004.
  • 106. T.H.T. Chan, L. Yu, and S.S. Law. Moving force identification studies, I: Theory. Journal of Sound and Vibration, 247(1):59-76, 2001.
  • 107. T.H.T. Chan, L. Yu, S.S. Law, and T.H. Yung. Moving force identification studies, II: comparative studies. Journal of Sound and Vibration, 247(1):77-95, 2001.
  • 108. X.Q. Zhu and S.S. Law. Practical aspects in moving load identification. Journal of Sound and Vibration, 258(1):123-146, 2002.
  • 109. P. C. Hansen. Deconvolution and regularization with Toeplitz matrices. Numerical Algorithms, 29:323—-378, 2002.
  • 110. P.C. Hansen. Rank-deficient and discrete ill-posed problems. Numerical aspects of linear inversion. SIAM, Philadelphia, 1998.
  • 111. P.C. Hansen. Discrete inverse problems: insight and algorithms. SIAM, Philadelphia, 2010.
  • 112. R. Kress. Linear integral equations. Springer, New York, 2nd ed. edition, 1999.
  • 113. L. Yu and T.H.T. Chan. Moving force identification based on the frequency-time domain method. Journal of Sound and Vibration, 261(2):329-349, 2003.
  • 114. S.S. Law, T.H.T. Chan, X.Q. Zhu, and Q.H. Zeng. Regularization in moving force identification. Journal of Engineering Mechanics (ASCE), 127(2):136-148, 2001.
  • 115. X.Q. Zhu and S.S. Law. Moving load identification on multi-span continuous bridges with elastic bearings. Mechanical Systems and Signal Processing, 20(7):1759-1782, 2006.
  • 116. A. González, C. Rowley, and E.J. OBrien. A general solution to the identification of moving vehicle forces on a bridge. International Journal for Numerical Methods in Engineering, 75(3):335-354, 2008.
  • 117. S.S. Law and Y.L. Fang. Moving force identification: optimal state estimation approach. Journal of Sound and Vibration, 239(2):233-254, 2001.
  • 118. T. Pinkaew. Identification of vehicle axle loads from bridge responses using updated static component technique. Engineering Structures, 28(11):1599-1608, 2006.
  • 119. T. Pinkaew and P. Asnachinda. Experimental study on the identification of dynamic axle loads of moving vehicles from the bending moments of bridges. Engineering Structures, 29(9):2282-2293, 2007.
  • 120. A. Mackiewicz, J. Holnicki-Szulc, and F. Lopez-Almansa. Optimal sensor location in active control of flexible structures. AIAA Journal, 34(4):857-859, 1996.
  • 121. C. Papadimitriou, Y. Haralampidis, and K. Sobczyk. Optimal experimental design in stochastic structural dynamics. Probabilistic Engineering Mechanics, 20(1):67-78, 2005.
  • 122. W.K. Gawronski. Advanced structural dynamics and active control of structures. Mechanical engineering series. Springer, 2004.
  • 123. M. van de Wal and B. de Jager. A review of methods for input/output selection. Automatica, 37(4):487-510, 2001.
  • 124. E. Jacquelin, A. Bennani, and M. Massenzio. Analysis of a force reconstruction problem. Structural Engineering and Mechanics, 21(3):237-254, 2005.
  • 125. W.M. Said and W.J. Staszewski. Optimal sensor location for damage detection using mutual information. In Proc. of the 11th Int'l Conf. on Adaptive Structures and Technologies, pages 428-435, Nagoya, Japan, 23¬26 October 2000.
  • 126. P.C. Hansen, M.E. Kilmer, and R.H. Kjeldsen. Exploiting residual information in the parameter choice for discrete ill-posed problems. BIT Numerical Mathematics, 46(1):41-59, 2006.
  • 127. J.M. Starkey and G.L. Merrill. On the ill-conditioned nature of indirect force-measurement techniques. International Journal of Analytical and Experimental Modal Analysis, 4(3):103-108, July 1989.
  • 128. Ä. Björck. Numerical Methods in Scientific Computing, volume 2. SIAM, Philadelphia, in press.
  • 129. A. Neumaier. Solving illconditioned and singular linear systems: A tutorial on regularization. SIAM Review, 40(3):636-666, September 1998.
  • 130. A. N. Tikhonov and V. Y. Arsenin. Solutions of ill-posed problems. V. H. Winston and Sons (distributed by Wiley, New York), 1977.
  • 131. F. Bauer and M.A. Lukas. Comparing parameter choice methods for regularization of ill-posed problems. Mathematics and Computers in Simulation, 81(9):1795-1841, 2011.
  • 132. R. Palm. Numerical Comparison of Regularization Algorithms for Solving Ill-Posed Problems. PhD thesis, University of Tartu, January 2010.
  • 133. G.H. Golub and C.F. Van Loan. Matrix computations. The John Hopkins University Press, 3rd ed. edition, 1996.
  • 134. R.H.-F. Chan and X.-Q. Jin. An introduction to iterative Toeplitz solvers. SIAM, Philadelphia, 2007.
  • 135. P. C. Hansen. The L-curve and its use in the numerical treatment of inverse problems. In P. R. Johnston, editor, Computational Inverse Problems in Electrocardiology, chapter 4, pages 119-142. WIT Press, Southampton, 2001.
  • 136. Ä. Björck. Numerical Methods for Least Squares Problems. SIAM, Philadelphia, 1996.
  • 137. J. Nocedal and S.J. Wright. Numerical Optimization. Springer, New York, 2nd ed. edition, 2006.
  • 138. Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst. Templates for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia, 1987.
  • 139. G. Dahlquist and Ä. Björck. Numerical Methods in Scientific Computing, volume 1. SIAM, Philadelphia, 2008.
  • 140. M. Fornasier and H. Rauhut. Compressive sensing. In O. Scherzer, editor, Handbook of Mathematical Methods in Imaging, chapter 2, pages 187-228. Springer, 2011.
  • 141. J.E.T. Penny, M.I. Friswell, and S.D. Garvey. Automatic choice of measurement locations for dynamic testing. AIAA Journal, 32(2):407-414, 1994.
  • 142. W.J. Staszewski and K. Worden. An overview of optimal sensor location methods for damage detection. In Proc. of SPIE, volume 4326, pages 179-187, 2001.
  • 143. K. Worden and A.P. Burrows. Optimal sensor placement for fault detection. Engineering Structures, 23(8):885-901, 2001.
  • 144. E. Majchrzak and J. Mendakiewicz. Sensitivity analysis as a tool of optimal sensors location for solidification parameters estimation. Materials Science Forum, 638-642:2640-2645, 2010.
  • 145. C.I. Bajer. Time integration methods—still questions. In W. Szczęśniak, editor, Theoretical Foundations of Civil Engineering, volume 1, pages 45¬54, Warsaw, Poland, 2002.
  • 146. Klaus-Jürgen Bathe. Finite Element Procedures. Prentice Hall, 1995.
  • 147. N.M. Newmark. A method of computation in structural dynamics. Transactions, ASCE, 127:1406-1435, 1962.
  • 148. W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, 3rd edition, 2007.
  • 149. W. Nowacki. Teoria sprężystości. PWN, Warsaw, 1970.
  • 150. J.D. Eshelby. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences, 241(1226):376-396, 1957.
  • 151. E. Kröner. Kontinuumstheorie der Versetzungen und Eigenspannungen, volume 5 of Ergebnisse der Angewandten Mathematik. Springer, Berlin, 1958.
  • 152. E. Kröner. Allgemeine kontinuumstheorie der Versetzungen und eigenspannungen. Archive for Rational Mechanics and Analysis, 4(1):273-334, 1959.
  • 153. J.H. Argyris. Elasto-plastic matrix displacement analysis of three-dimensional continua. Journal of the Royal Aeronautical Society, 69:633¬636, 1965.
  • 154. G. Maier. A matrix structural theory of piecewiselinear plasticity with interacting yield planes. Meccanica, 7(1):54-66, 1970.
  • 155. K.I. Majid and T. Celik. The elastic-plastic analysis of frames by the theorems of structural variation. International Journal for Numerical Methods in Engineering, 21(4):671-681, 1985.
  • 156. J. Holnicki-Szulc and J. Gierliński. Structural modifications simulated by virtual distortions. International Journal for Numerical Methods in Engineering, 28(3):645-666, 1989.
  • 157. J. Holnicki-Szulc. Prestress of truss and frame structures. Journal of the Structural Division, 105(3):601-616, 1979.
  • 158. J. Holnicki-Szulc and R. Haftka. Vibration mode shape control by prestressing. AIAA Journal, 30(7):1924-1927, 1992.
  • 159. Jan Holnicki-Szulc. Virtual Distortion Method. Lecture Notes in Engineering. Springer-Verlag, 1991.
  • 160. P.V. Makode, M.R. Ramirez, and R.B. Corotis. Reanalysis of rigid frame structures by the virtual distortion method. Structural and Multidisci-plinary Optimization, 11(1-2):71-79, 1996.
  • 161. J. T. Putresza and P. Kołakowski. Sensitivity analysis of frame structures — Virtual Distortion Method approach. International Journal for Numerical Methods in Engineering, 50(6):1307-1329, 2001.
  • 162. J. Holnicki-Szulc, editor. Smart Technologies for Safety Engineering. John Wiley & Sons Ltd, Chichester, 2008.
  • 163. M. Wiklo and J. Holnicki-Szulc. Optimal design of adaptive structures. Part II. Adaptation to impact loads. Structural and Multidisciplinary Optmization, 37(4):351-366, 2009.
  • 164. M. Di Paola. Probabilistic analysis of truss structures with uncertain parameters (virtual distortion method approach). Probabilistic Engineering Mechanics, 19(4):321-329, 2004.
  • 165. M. Di Paola, A. Pirrotta, and M. Zingales. Stochastic dynamics of linear elastic trusses in presence of structural uncertainties (virtual distortion approach). Probabilistic Engineering Mechanics, 19(1-2):41-51, 2004.
  • 166. U. Kirsch. Reanalysis and sensitivity reanalysis by combined approximations. Structural and Multidisciplinary Optimization, 40(1-6):1-15, 2010.
  • 167. U. Kirsch, M. Kocvara, and J. Zowe. Accurate reanalysis of structures by a preconditioned conjugate gradient method. International Journal for Numerical Methods in Engineering, 55(2):233-251, 2002.
  • 168. M.A. Akgün, J.H. Garcelon, and R.T. Haftka. Fast exact linear and non-linear structural reanalysis and the Sherman-Morrison-Woodbury formulas. International Journal for Numerical Methods in Engineering, 50(7):1587-1606, March 2001.
  • 169. W.W. Hager. Updating the inverse of a matrix. SIAM Review, 31(2):221-239, 1989.
  • 170. J.S. Arora. Survey of structural reanalysis techniques. Journal of the Structural Division, 4(4):783-802, 1976.
  • 171. J.-F.M. Barthelemy and R.T. Haftka. Approximation concepts for optimum design—a review. Structural Optimization, 5(3):129-144, 1993.
  • 172. A. M. Abu Kassim and B. H. V. Topping. Static reanalysis: A review. Journal of Structural Engineering, 113(5):1029-1045, 1987.
  • 173. M. Mróz, L. Jankowski, and J. Holnicki-Szulc. A vdm-based method for fast reanalysis and identification of structural damping. In Proc. of the 8th World Congress on Structural and Multidisciplinary Optimization (WCSMO-8), Lisbon, Portugal, June 1-5 2009.
  • 174. M. Mróz, L. Jankowski, and J. Holnicki-Szulc. Vdm-based identification of localized, damage induced damping. In Proc. of the 5th European Workshop on Structural Health Monitoring (EWSHM 2010), pages 988-993, Sorrento, Italy, June 29 - July 2 2010.
  • 175. M. Wikło. Projektowanie ustrojów adaptacyjnych poddawanych obciążeniom udarowym. PhD thesis, Institute of Fundamental Technological Research of the Polish Academy of Sciences (IPPT PAN), Warsaw, 2007.
  • 176. K. Dems and Z. Mróz. Identification of damage in beam and plate structures using parameter-dependent frequency changes. Engineering Computations, 18(1-2):96-120, 2001.
  • 177. K. Dems and Z. Mróz. Damage identification using modal, static and thermographic analysis with additional control parameters. Computers and Structures, 88(21-22):1254-1264, 2010.
  • 178. K. Dems and J. Turant. Structural damage identification using frequency and modal changes. Bulletin of the Polish Academy of Sciences, 59(1):27-32, 2011.
  • 179. R.T. Haftka and Z. Gurdal. Elements of structural optimization. Kluwer Publishers, 3 edition, 1992.
  • 180. M. Kleiber, H. Antunez, and P. Kowalczyk. Parameter Sensitivity in Nonlinear Mechanics: Theory and Finite Element Computations. John Wiley & Sons, 1997.
  • 181. D.I. Papadimitriou and K.C. Giannakoglou. Aerodynamic shape optimization using first and second order adjoint and direct approaches. Archives of Computational Methods in Engineering, 15(4):447-488, 2008.
  • 182. P. Tauzowski and M. Kleiber. Parameter and shape sensitivity of thermo-viscoelastic response. Computers and Structures, 84(5-6):385-399, 2006.
  • 183. J.D. Achenbach. Structural health monitoring — What is the prescription? Mechanics Research Communications, 36(2):137-142, 2009.
  • 184. W. Fan and P. Qiao. Vibration-based damage identification methods: A review and comparative study. Structural Health Monitoring, 10(1):83-111, 2011.
  • 185. C.P. Fritzen and P. Kraemer. Self-diagnosis of smart structures based on dynamical properties. Mechanical Systems and Signal Processing, 23(6):1830-1845, 2009.
  • 186. P. Kołakowski, L. E. Mujica, and J. Vehi. Two approaches to structural damage identification: Model updating vs. soft computing. Journal of Intelligent Material Systems and Structures, 17(1):63-79, 2006.
  • 187. K. Mendrok and T. Uhl. The application of modal filters for damage detection. Smart structures and systems, 6(2):115-133, 2010.
  • 188. K. Mendrok and T. Uhl. Experimental verification of the damage localization procedure based on modal filtering. Structural Health Monitoring: An International Journal, 10(2):157-171, 2011.
  • 189. O. Bareille, M. Kharrat, W. Zhou, and M.N. Ichchou. Distributed piezoelectric guided-t-wave generator, design and analysis. Mechatronics, 5(5):544-551, 2012.
  • 190. P.J. Fanning and E.P. Carden. Experimentally validated added mass identification algorithm based on frequency response functions. Journal of Engineering Mechanics, 130(9):1045-1051, 2004.
  • 191. M. Ge and E.M. Lui. Structural damage identification using system dynamic properties. Computers and Structures, 83(27):2185-2196, 2005.
  • 192. W. Ostachowicz, M. Krawczuk, M. Cartmell, and M. Gilchrist. Wave propagation in delaminated beam. Computers and Structures, 82(6):475-483, 2004.
  • 193. W. Ostachowicz. Damage detection of structures using spectral finite element method. Computers & Structures, 86(3-5):454-462, 2008.
  • 194. W. Ostachowicz, M. Krawczuk, and M. Cartmell. The location of a concentrated mass on rectangular plates from measurements of natural vibrations. Computers and Structures, 80(16-17):1419-1428, 2002.
  • 195. A. Świercz, P. Kołakowski, and J. Holnicki-Szulc. Damage identification in skeletal structures using the virtual distortion method in frequency domain. Mechanical Systems and Signal Processing, 22(8):1826-1839, 2008.
  • 196. T. Burczyński, W. Kuś, A. Długosz, and P. Orantek. Optimization and defect identification using distributed evolutionary algorithms. Engineering Applications of Artificial Intelligence, 17(4):337-344, 2004.
  • 197. B. Kouchmeshky, W. Aquino, and A.E. Billek. Structural damage identification using co-evolution and frequency response functions. Structural Control & Health Monitoring, 15(2):162-182, 2008.
  • 198. G.S. Wang. Application of hybrid genetic algorithm to system identification. Structural Control & Health Monitoring, 16(2):125-153, 2009.
  • 199. R. Schaefer. Global optimization problems. Studies in Computational Intelligence, 74:7-30, 2007.
  • 200. L.E. Mujica Delgado. A hybrid approach of knowledge-based reasoning for structural assessment. PhD thesis, University of Girona, 2006.
  • 201. L.E. Mujica Delgado, J. Vehi, W. Staszewski, and K. Worden. Impact damage detection in aircraft composites using knowledge-based reasoning. Structural Health Monitoring: An International Journal, 7(3):215-230, 2008.
  • 202. R. Le Riche, D. Gualandris, J.J. Thomas, and F. Hemez. Neural identifiation of non-linear dynamic structures. Journal of Sound and Vibration, 248(2):247-265, 2001.
  • 203. W.J. Staszewski. Intelligent signal processing for damage detection in composite materials. Composites Science and Technology, 62(7-8):941-950, 2002.
  • 204. T. Szolc, P. Tauzowski, R. Stocki, and J. Knabel. Damage identification in vibrating rotor-shaft systems by efficient sampling approach. Mechanical Systems and Signal Processing, 23(5):1615-1633, 2009.
  • 205. M. Liefvendahl and R. Stocki. A study on algorithms for optimization of latin hypercubes. Journal of Statistical Planning and Inference, 136(9):3231-3247, 2006.
  • 206. Ch. Efstathiades, C.C. Baniotopoulos, P. Nazarko, L. Ziemiański, and G.E. Stavroulakis. Application of neural networks for the structural health monitoring in curtain-wall systems. Engineering Structures, 29(12):3475-3484, 2007.
  • 207. P. Nazarko and L. Ziemiański. Towards application of soft computing in structural health monitoring. In L. Rutkowski, R. Scherer, R. Tadeusiewicz, L. Zadeh, and J. Zurada, editors, Artifical Intelligence and Soft Computing, volume 6114 of Lecture Notes in Computer Science, pages 56-63. Springer Berlin-Heidelberg, 2010.
  • 208. Z. Waszczyszyn and L. Ziemiański. Neural networks in mechanics of structures and materials — new results and prospects of applications. Computers & Structures, 79(22-25):2261-2276, 2001.
  • 209. Z. Waszczyszyn and L. Ziemiański. Neural networks in the identification analysis of structural mechanics problems. In Z. Mróz and G.E. Stavroulakis, editors, Parameter Identification of Materials and Structures, volume 469 of CISM, chapter 7, pages 265-340. Springer, Wien-New York, 2005.
  • 210. Z. Waszczyszyn and L. Ziemiański. Neurocomputing in the analysis of selected inverse problems of mechanics of structures and materials. Computer Assisted Mechanics and Engineering Sciences, 13(1):125-159, 2006.
  • 211. M. Link, S. Stöhr, and M. Weiland. Identification of structural property degradations by computational model updating. Key Engineering Materials, 347:19-34, 2007.
  • 212. M. Link and M. Weiland. Damage identification by multi-model updating in the modal and in the time domain. Mechanical Systems and Signal Processing, 23(6):1734-1746, 2009.
  • 213. M. Link, M. Weiland, and Th. Seckert. Computational model updating for damage identification in the time domain. In Proceedings of the International Conference on Noise and Vibration Engineering (ISMA), Leuven, Belgium, September 2008.
  • 214. W. Moczulski. Problems of declarative and procedural knowledge acquisition for machinery diagnostics. Computer Assisted Mechanics and Engineering Sciences, 9(1):71-86, 2002.
  • 215. O.R. de Lautour and P. Omenzetter. Nearest neighbor and learning vector quantization classification for damage detection using time series analysis. Structural Control and Health Monitoring, 17(6):614-631, 2010.
  • 216. M. Krommer and Y. Vetyukov. A novel damage detection method based on spatial compatibility filtering. In R. Scheidl and B. Jacoby, editors, Proc. of 13th Mechatronics Forum International Conference (Mechatronics 2012), volume 3, pages 732-739, Linz, Austria, September 17-19th 2012.
  • 217. M. Krommer and H. Irschik. Design of piezoelectric sensors for structural and health monitoring based on the principle of virtual work. Advanced Materials Research, 745:73-87, 2013.
  • 218. F. Casciati and S. Casciati. Structural health monitoring by lyapunov exponents of non-linear time series. Structural Control and Health Monitoring, 13(1):132-146, 2006.
  • 219. J. Iwaniec, T. Uhl, W.J. Staszewski, and A. Klepka. Detection of changes in cracked aluminium plate determinism by recurrence analysis. Nonlinear Dynamics, 70(1):125-140, 2012.
  • 220. J. Kiciński. Model based diagnostics—today and tomorrow. Diagnostyka, 30(1):241-247, 2004.
  • 221. L. Faravelli and S. Casciati. Structural damage detection and localization by response change diagnosis. Progress in Structural Engineering and Materials, 6(2):104-115, 2004.
  • 222. M. Kleiber, J. Knabel, and J. Rojek. Response surface method for probabilistic assessment of metal forming failures. International Journal for Numerical Methods in Engineering, 60(1):51-67, 2004.
  • 223. J.-N. Juang and R.S. Pappa. An eigensystem realization algorithm for modal parameter identification and model reduction. Journal of Guidance, Control, and Dynamics, 8(5):620-627, 1985.
  • 224. W. Heylen, S. Lammens, and P. Sas. Modal analysis theory and testing. Katholieke Universiteit Leuven, Faculty of Engineering, Department of Mechanical Engineering, 1998.
  • 225. P. Vanhonacker. Differential and difference sensitivities of natural frequencies and mode shapes of mechanical structures. AIAA Journal, 18(12):1511-1514, 1980.
  • 226. P. Vanhonacker. The Use of Modal Parameters of Mechanical Structures in Sensitivity Analysis-, System Synthesis- and System Identification Methods. PhD thesis, Department of Mechanical Engineering, Katholieke Uni-versiteit Leuven, Belgium, 1980.
  • 227. K.C. Park, G.W. Reich, and K.F. Alvin. Structural damage detection using localized flexibilities. Journal of Intelligent Material Systems and Structures, 9(11):911-919, 1998.
  • 228. K.C. Park and G.W. Reich. Use of substructural transmission zeros for structural health monitoring. AIAA Journal, 38(6):1040-1046, 2000.
  • 229. D. Bernal. Flexibility-based damage localization from stochastic realization results. Journal of Engineering Mechanics, 132(6):651-658, 2006.
  • 230. Z. Duan, G. Yan, J. Ou, and B.F. Spencer. Damage detection in ambient vibration using proportional flexibility matrix with incomplete measured DOFs. Structural Control and Health Monitoring, 14(2):186-196, 2007.
  • 231. C.-B. Yun and E.Y. Bahng. Substructural identification using neural networks. Computers and structures, 77(1):41-52, 2000.
  • 232. Y. Bao, H. Li, Y. An, and J. Ou. Dempster-Shafer evidence theory approach to structural damage detection. Structural Health Monitoring, 11(1):13-26, 2012.
  • 233. Y. An and J. Ou. Experimental and numerical studies on model updating method of damage severity identification utilizing four cost functions. Structural Control and Health Monitoring, 20(1):107-120, 2013.
  • 234. C.G. Koh, L.M. See, and T. Balendra. Estimation of structural parameters in time domain: a substructure approach. Earthquake Engineering and Structural Dynamics, 20(8):787-801, 1991.
  • 235. C.G. Koh, B. Hong, and C.Y. Liaw. Substructural and progressive structural identification methods. Engineering Structures, 25(12):1551-1563, 2003.
  • 236. A.W.C. Oreta and T. Tanabe. Element identification of member properties of framed structures. Journal of Structural Engineering, 120(7):1961-1976, 1994.
  • 237. D. Zhang and E.A. Johnson. Substructure identification for shear structures: cross-power spectral density method. Smart Materials and Structures, 21:055006, 2012.
  • 238. C.-B. Yun and H.-J. Lee. Substructural identification for damage estimation of structures. Structural Safety, 19(1):121-140, 1997.
  • 239. K.F. Tee, C.G. Koh, and S.T. Quek. Substructural first- and secondorder model identification for structural damage assessment. Earthquake Engineering and Structural Dynamics, 34(15):1755-1775, 2005.
  • 240. K.F. Tee, C.G. Koh, and S.T. Quek. Numerical and experimental studies of a substructural identification strategy. Structural Health Monitoring, 8(5):397-410, 2009.
  • 241. C. Koh and K. Shankar. Substructural identification method without interface measurement. Journal of Engineering Mechanics (ASCE), 129(7):769- 776, 2003.
  • 242. J.N. Yang and H.W. Huang. Substructure damage identification using sequential nonlinear LSE method. In Proceedings of the 4th International Conference on Earthquake Engineering, Taipei, Taiwan, October 2006.
  • 243. J.N. Yang and H.W. Huang. Substructure damage identification using damage tracking technique. In Proc. SPIE 6529, page 65292R, 2007.
  • 244. Y. Lei, Y. Wu, and T. Li. Identification of non-linear structural parameters under limited input and output measurements. International Journal of Non-Linear Mechanics, 47(10):1141-1146, 2012.
  • 245. K.V. Yuen and L.S. Katafygiotis. Substructure identification and health monitoring using noisy response measurements only. Computer-Aided Civil and Infrastructure Engineering, 21(4):280-291, 2006.
  • 246. D. Zhang, C. DeVore, and E.A. Johnson. Experimental verification of controlled substructure identification for shear structures. In Proceedings of the 5th World Conference on Structural Control and Monitoring (5WC-SCM), Tokyo, Japan, July 2010.
  • 247. T.N. Trinh and C.G. Koh. An improved substructural identification strategy for large structural systems. Structural Control and Health Monitoring, 19(8):686-700, 2012.
  • 248. Z. Xing and A. Mita. A substructure approach to local damage detection of shear structure. Structural Control and Health Monitoring, 19(2):309-318, 2012.
  • 249. X.J. Wang, C.G. Koh, and Z. Zhang. Damage identification based on strain and translational measurements with substructure approach. In Proceedings of the 1st Middle East Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structure, Dubai, UAE, February 2011.
  • 250. J. Hou, Ł. Jankowski, and J. Ou. Structural damage identification by adding virtual masses using the virtual distortion method. Structural and Multidisciplinary Optimization, 48(1):59-72, 2013.
  • 251. N.G. Nalitolela, J.E.T. Penny, and M.I. Friswell. Updating model parameters by adding an imagined stiffness to the structure. Mechanical Systems and Signal Processing, 7(2):161-172, 1993.
  • 252. D. Bojczuk and Z. Mróz. Determination of optimal actuator forces and positions in smart structures using adjoint method. Structural and Multi-disciplinary Optimization, 30(4):308-319, 2005.
  • 253. R.J. Allemang. The modal assurance criterion — twenty years of use and abuse. Sound and Vibration, (August):14-21, 2003.
  • 254. F. Claeyssen, N. Lhermet, R. Le Letty, F. Barillot, M. Debarnot, M.F. Six, G. Thomin anf M. Privat, and P. Bouchilloux. Piezoelectric actuators and motors based on shell structures. In Proceedings of SPIE, volume 3991, pages 202-209, 2000.
  • 255. J. Chen and J. Li. Simultaneous identification of structural parameters and input time history from output-only measurements. Computational Mechanics, 33(5):365-374, 2004.
  • 256. Z.L. Lu and S.S. Law. Identification of system parameters and input force from output only. Mechanical Systems and Signal Processing, 21(5):2099- 2111, 2007.
  • 257. K. Zhang, H. Li, Z. Duan, and S.S. Law. A probabilistic damage identification approach for structures with uncertainties under unknown input. Mechanical Systems and Signal Processing, 25(4):1126-1145, 2011.
  • 258. C.-Y. Kim, D.-S. Jung, N.-S. Kim, S.-D. Kwon, and M.Q. Feng. Effect of vehicle weight on natural frequencies of bridges measured from traffic-induced vibration. Earthquake Engineering and Engineering Vibration, 2(1):109-115, 2003.
  • 259. S.S. Law, S.Q. Wu, and Z.Y. Shi. Moving load and prestress identification using wavelet-based method. Journal of Applied Mechanics, 75(2):021014, 2008.
  • 260. X.Q. Zhu and S.S. Law. Damage detection in simply supported concrete bridge structure under moving vehicular loads. Journal of Vibration and Acoustics, 129(1):58-65, 2007.
  • 261. Z.R. Lu and J.K. Liu. Identification of both structural damages in bridge deck and vehicular parameters using measured dynamic responses. Computers & Structures, 89(13-14):1397-1405, 2011.
  • 262. Z.R. Lu and J.K. Liu. Parameters identification for a coupled bridge-vehicle system with spring-mass attachments. Applied Mathematics and Computation, 219(17):9174-9186, 2013.
  • 263. M. Hoshiya and O. Maruyama. Identification of running load and beam system. Journal of Engineering Mechanics ASCE, 113(6):813-824, 1987.
  • 264. L. Majumder and C.S. Manohar. A time-domain approach for damage detection in beam structures using vibration data with a moving oscillator as an excitation source. Journal of Sound and Vibration, 268(4):699—-716, 2003.
  • 265. L. Majumder and C.S. Manohar. Nonlinear reduced models for beam damage detection using data on moving oscillator-beam interactions. Computers and Structures, 82(2-3):301-314, 2004.
  • 266. H.A. Nasrellah and C.S. Manohar. A particle filtering approach for structural system identification in vehicle-structure interaction problems. Journal of Sound and Vibration, 329(9):1289-1309, 2010.
  • 267. R. Sieniawska, P. Śniady, and S. Żukowski. Identification of the structure parameters applying a moving load. Journal of Sound and Vibration, 319(1-2):355-365, 2009.
  • 268. V. Pakrashi, A. O'Connor, and B. Basu. A bridge-vehicle interaction based experimental investigation of damage evolution. Structural Health Monitoring, 9(4):285-296, 2010.
  • 269. C. Bilello and L.A. Bergman. Vibration of damaged beams under a moving mass: theory and experimental validation. Journal of Sound and Vibration, 274(3-5):567-582, 2004.
  • 270. C. Bilello, L.A. Bergman, and D. Kuchma. Experimental investigation of a small scale bridge model under a moving mass. Journal of Structural Engineering, 130(5):799-804, 2004.
  • 271. J.Q. Bu, S.S. Law, and X.Q. Zhu. Innovative bridge condition assessment from dynamic response of a passing vehicle. Journal of Engineering Mechanics, 132(12):1372-1379, 2006.
  • 272. S.S. Law and X.Q. Zhu. Dynamic behaviour of damaged concrete bridge structures under moving vehicular loads. Engineering Structures, 26(9):1279-1293, 2004.
  • 273. J.W. Lee, J.D. Kim, C.B. Yun, J.H. Yi, and J.M. Shim. Health monitoring method for bridges under ordinary traffic loadings. Journal of Sound and Vibration, 257(2):247-264, 2002.
  • 274. M. Kokot and J. Holnicki-Szulc. Defect identification in electrical circuits via the virtual distortion method. Part 1: Steady-state case. Journal of Intelligent Material Systems and Structures, 20(12):1465-1473, 2009.
  • 275. A. Orłowska, P. Kołakowski, and J. Holnicki-Szulc. Detecting delamination zones in composites by embedded electrical grid and thermographic methods. Smart Materials and Structures, 20(10):105009, 2011.
  • 276. M.I. Friswell and J.E.T. Penny. Crack modeling for structural health monitoring. Structural Health Monitoring, 1(2):139-148, 2002.
  • 277. W. Ostachowicz and M. Krawczuk. On modelling of structural stiffness loss due to damage. Key Engineering Materials, 204-205:185-200, 2001.
  • 278. C.I. Bajer and B. Dyniewicz. Numerical modelling of structure vibrations under inertial moving load. Archive of Applied Mechanics, 79(6-7):499-508, 2009.
  • 279. B. Dyniewicz and C.I. Bajer. New feature of the solution of a timoshenko beam carrying the moving mass particle. Archive of Applied Mechanics, 62(5):327-341, 2010.
  • 280. C.I. Bajer and B. Dyniewicz. Numerical Analysis of Vibrations of Structures under Moving Inertial Load, volume 65 of Lecture Notes in Applied and Computational Mechanics. Springer, 2012.
  • 281. F.T.K. Au, R.J. Jiang, and Y.K. Cheung. Parameter identification of vehicles moving on continuous bridges. Journal of Sound and Vibration, 269(1-2):91-111, 2004.
  • 282. G. Sheng, C. Li, and B. Zhao. Dynamic analysis of a simply-supported beam subjected to moving vehicles. Engineering Mechanics (in Chinese), 23(12):154-158, 2006.
  • 283. J.C. Simo and T.J.R. Hughes. Computational inelasticity, volume 7 of Interdisciplinary Applied Mathematics. Springer, 1989.
  • 284. J. Hou, Ł. Jankowski, and J. Ou. An online substructure identification method for local structural health monitoring. Smart Materials and Structures, 22(9):095017, 2013.
  • 285. R. Kress. Integral equations. In N. Higham, editor, The Princeton Companion to Applied Mathematics. Princeton University Press, Princeton, in press.
  • 286. W. Rudin. Functional analysis. Mc-Graw Hill, 2nd edition, 1991.
  • 287. A. N. Kolmogorov and S. W. Fomin. Elements of the Theory of Functions and Functional Analysis [Èlementy teorii funkcij i funkcional’nogo analiza]. Nauka, Moskva, 4th edition, 1976 (in Russian).
  • 288. J. Hadamard. Sur les problèmes aux dérivés partielles et leur signification physique. Princeton University Bulletin, 13:49-52, 1902.
  • 289. J. Hadamard. Lectures on Cauchy 's problem in linear partial differential equations. Yale University Press, New Haven, 1923.
  • 290. F. Riesz. Über lineare Funktionalgleichungen. Acta Mathematica, 41:71-98, 1916.
  • 291. I. Fredholm. Sur une classe d'équations fonctionnelles. Acta Mathematica, 27:365-390, 1903.
  • 292. L.M. Delves and J.L. Mohamed. Computational methods for integral equations. Cambridge University Press, 1988.
  • 293. P.C. Hansen. Computation of the singular value expansion. Computing, 40(3):185-199, 1988.
  • 294. P.C. Hansen. The discrete picard condition for discrete ill-posed problems. BIT Numerical Mathematics, 30(4):658-672, 1990.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-21b9ffb4-dc08-44cf-8901-edd7ccdb8457
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.