Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, we study the Skorokhod problem with two constraints, where both constraints are nonlinear. We prove the existence and uniqueness of a solution and also provide an explicit construction for the solution. In addition, a number of properties of the solution are investigated, including continuity under uniform and J1 metrics and a comparison principle.
Czasopismo
Rocznik
Tom
Strony
207--239
Opis fizyczny
Bibliogr. 17 poz.
Twórcy
autor
- Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao 266237, Shandong, China
Bibliografia
- 1] K. Burdzy, W. Kang and K. Ramanan, The Skorokhod problem in a time-dependent interval, Stoch. Process. Appl. 119 (2009), 428-452.
- [2] K. Burdzy and D. Nualart, Brownian motion reflected on Brownian motion, Probab. Theory Related Fields 122 (2002), 471-493.
- [3] M. Chaleyat-Maurel and N. El Karoui, Un problème de réflexion et ses applications au temps local et auxéquations différentielles stochastiques sur R, cas continu, Astérisque 52-53 (1978), 117-144.
- [4] M. Chaleyat-Maurel, N. El Karoui and B. Marchal, Réflexion discontinue et systèmes stochastiques, Ann. Probab. 8 (1980), 1049-1067.
- [5] N. El Karoui and I. Karatzas, A new approach to the Skorokhod problem, and its applications, Stoch. Stoch. Rep. 34 (1991), 57-82.
- [6] A. Falkowski and L. Słomiński, Mean reflected stochastic differential equations with two constraints, Stoch. Process. Appl. 141 (2021), 172-196.
- [7] A. Falkowski and L. Słomi´nski, Backward stochastic differential equations with mean reflection and two constraints, Bull. Sci. Math. 176 (2022), art. 103117, 31 pp..
- [8] A. Hilbert, I. Jarni and Y. Ouknine, Stochastic differential equations with respect to optional semimartingales and two reflecting regulated barriers, arXiv: 2202.12862v1 (2022).
- [9] L. Kruk, J. Lehoczky, K. Ramanan and S. Shreve, An explicit formula for the Skorokhod map on [0, a], Ann. Probab. 35 (2007), 1740-1768.
- [10] A. Mandelbaum and W. Massey, Strong approximations for time-dependent queues, Math. Oper. Res. 20 (1995), 33-63.
- [11] A. V. Skorokhod, Stochastic equations for diffusions in a bounded region, Theory Probab. Appl. 6 (1961), 264-274.
- [12] M. Slaby, Explicit representation of the Skorokhod map with time dependent boundaries, Probab. Math. Statist. 30 (2010), 29-60.
- [13] M. Slaby, An explicit representation of the extended Skorokhod map with two time-dependent boundaries, J. Probab. Statist. 2010, art. 846320, 18 pp.
- [14] L. Słomiński and T. Wojciechowski, Stochastic differential equations with jump reflection at time-dependent barriers, Stoch. Process. Appl. 120 (2010), 1701-1721.
- [15] L. Słomiński and T. Wojciechowski, Stochastic differential equations with time-dependent reflecting barriers, Stochastics 85 (2013), 27-47.
- [16] F. Soucaliuc and W. Werner, A note on reflecting Brownian motions, Electron. Commun. Probab. 7 (2002), 117-122.
- [17] H. Tanaka, Stochastic differential equations with reflecting boundary condition in convex regions, Hiroshima Math. J. 9 (1979), 163-177.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-21b3396d-c982-4a83-bb32-ffd2cb62d5bc