PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Eigenvector Priority Function Causes Strong Rank Reversal in Group Decision Making

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper shows an example of strong rank reversal in group decision making. Decision makers have preferences expressed through a reciprocal paired comparison matrix. Every one of them applies the eigenvector priority function to her paired comparison matrix to obtain her individual priority vector and then a group priority vector is computed by any of the following two procedures: a) Averaging the already computed individual priority vectors, and b) Averaging the entries of the comparison matrices to obtain a group comparison matrix, and applying to it the eigenvector priority function. Strong rank reversal means that there is one alternative that has the highest priority for every decision maker, and consequently the highest priority in the averaged priority vector obtained by procedure (a), but loses such highest priority when procedure (b) is applied.
Wydawca
Rocznik
Strony
255--261
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
autor
  • Departamento de Economía, Universidad de Alcalá, 28802, Alcalá de Henares, Madrid, Spain
autor
  • Departamento de Economía, Universidad de Alcalá, 28802, Alcalá de Henares, Madrid, Spain
Bibliografia
  • [1] Maleki H, Zahir S. A comprehensive literature review of the rank reversal phenomenon in the analytic hierarchy process. Journal of Multi-Criteria Decision Analysis. 2013;20(3-4):141–155. doi:10.1002/mcda.1479.
  • [2] Wang YM, Luo Y. On rank reversal in decision analysis. Mathematical and Computer Modelling. 2009; 49(5):1221–1229. doi:10.1016/j.mcm.2008.06.019.
  • [3] Barzilai J, Golany B. AHP rank reversal, normalization and aggregation rules. INFOR-Information Systems and Operational Research. 1994;32(2):57–64.
  • [4] Belton V, Gear T. On a short-coming of Saaty’s method of analytic hierarchies. Omega. 1983;11(3):228–230. Available from: http://www.sciencedirect.com/science/article/pii/0305-0483(83)90047-6.
  • [5] Dyer JS. Remarks on the analytic hierarchy process. Management science. 1990;36(3):249–258. doi:10.1287/mnsc.36.3.249.
  • [6] Pérez J. Some comments on Saaty’s AHP. Management Science. 1995;41(6):1091–1095. doi:10.1287/mnsc.41.6.1091.
  • [7] Saaty TL. An exposition of the AHP in reply to the paper “remarks on the analytic hierarchy process”. Management science. 1990;36(3):259–268. doi:10.1287/mnsc.36.3.259.
  • [8] Saaty TL. That is not the analytic hierarchy process: what the AHP is and what it is not. Journal of Multi-Criteria Decision Analysis. 1997; 6(6):324–335. doi:10.1002/(SICI)1099-1360(199711)6:6<324::AIDMCDA167>3.0.CO;2-Q.
  • [9] Saaty TL, Vargas LG. The legitimacy of rank reversal. Omega. 1984;12(5):513–516. doi:10.1016/0305-0483(84)90052-5.
  • [10] Pérez J. Theoretical elements of comparison among ordinal discrete multicriteria methods. Journal of Multi-Criteria Decision Analysis. 1994; 3(3):157–176. doi:10.1002/mcda.4020030303.
  • [11] Sen A. Social choice theory: A re-examination. Econometrica: journal of the Econometric Society. 1977; p.53–89. Available from: http://www.jstor.org/stable/1913287. doi:10.2307/1913287.
  • [12] Pérez J, Jimeno JL, Mokotoff E. Another potential shortcoming of AHP. Top. 2006;14(1):99–111. doi:10.1007/BF02579004.
  • [13] Fishburn PC, Brams SJ. Paradoxes of preferential voting. Mathematics Magazine. 1983;p. 207–214. Available from: http://www.jstor.org/stable/2689808.
  • [14] Moulin H. Condorcet’s principle implies the no show paradox. Journal of Economic Theory. 1988;45(1):53–64. Available from: http://www.sciencedirect.com/science/article/pii/0022-0531(88)90253-0. doi:10.1016/0022-0531(88)90253-0.
  • [15] Pérez J. The strong no show paradoxes are a common flaw in Condorcet voting correspondences. Social Choice and Welfare. 2001;18:601–616. doi:10.1007/s003550000079.
  • [16] Young HP. Social choice scoring functions. SIAM Journal on Applied Mathematics. 1975;28(4):824–838. Available from: http://www.jstor.org/stable/2100365.
  • [17] Koczkodaj WW, Szwarc R. On axiomatization of inconsistency indicators for pairwise comparisons. Fundamenta Informaticae. 2014;132(4):485–500. doi:10.3233/FI-2014-1055.
  • [18] Koczkodaj WW. A new definition of consistency of pairwise comparisons. Mathematical and computer modelling. 1993;18(7):79–84. doi:10.1016/0895-7177(93)90059-8.
  • [19] Bana e Costa CA, Vansnick JC. A critical analysis of the eigenvalue method used to derive priorities in AHP. European Journal of Operational Research. 2008;187(3):1422–1428. doi:10.1016/j.ejor.2006.09.022.
  • [20] Barzilai J. Deriving weights from pairwise comparison matrices. Journal of the operational research society. 1997;48(12):1226–1232. Available from: http://www.jstor.org/stable/3010752. doi:10.2307/3010752.
  • [21] Saaty TL. Eigenvector and logarithmic least squares. European journal of operational research. 1990;48(1): 156–160. doi:10.1016/0377-2217(90)90073-K.
  • [22] Aczél J, Saaty TL. Procedures for synthesizing ratio judgements. Journal of mathematical Psychology. 1983; 27(1):93–102. doi:10.1016/0022-2496(83)90028-7.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-21b193ec-fbec-4e11-9914-d47ed1607d0e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.