PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Analysis of Water Age and Flushing of the Water Supply Network of the Pressure Reduction Zone

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The water of appropriate quality introduced in the water system changes its chemical properties. Depending on the chemical properties of water and pipe materials, various phenomena may occur, e.g. corrosion, and biofilm structure. The decreasing water demand in existing water systems leads to a reduction in the water flow velocity in the pipes. Accordingly, the age of the water in the system increases. It is especially visible at connections and long sections of the network. The deteriorating water quality along with the elapsing time of its stay in the pipes makes it necessary to perform appropriate measures, e.g. flushing the network. Water supply services usually perform them intuitively. The choice of flushing sites, times, or flow rates is not measured and verified. The age of the water and the efficiency of flushing can be simulated in computer programs. EPANET provides tools for such simulations. The research aimed to check the effects of flushing the network and the age of water in the pressure reduction zone. This is a case that is particularly prone to the increasing age of water. The research has shown that the network flushing sites used so far contribute to the exchange of water in the main water pipes. The simulations showed the need for the additional flush in new places, and in the tested case, the age of the water in the pipes is as much as the intervals between subsequent rinses.
Rocznik
Strony
229--238
Opis fizyczny
Bibliogr. 20 poz., rys.
Twórcy
  • Department of Water Supply and Sewage Systems, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, ul. Wiejska 45E, 15-351 Bialystok, Poland
  • Department of Water Supply and Sewage Systems, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, ul. Wiejska 45E, 15-351 Bialystok, Poland
Bibliografia
  • 1. Ainsworth R. 2013. Safe Piped Water: Managing Microbial Water Quality in Piped Distribution Systems. https://doi.org/10.2166/9781780405841
  • 2. Annus I., Vassiljev A. 2015. Different Approaches for Calibration of an Operational Water Distribution System Containing Old Pipes. Procedia Engineering, 119, 526–534. https://doi.org/10.1016/j.proeng.2015.08.900
  • 3. Avni N., Fishbain B., Shamir U. 2015. Water consumption patterns as a basis for water demand modeling. Water Resources Research, 51(10), 8165–8181. DOI: 10.1002/2014WR016662.
  • 4. Biatech Ltd. 2019. DTM HYDRO-TEST with electronic HATEST measuring device. Biatech Ltd, Zaścianki.
  • 5. Blokker E.J.M. et al. 2016. Relating Water Quality and Age in Drinking Water Distribution Systems Using Self-Organising Maps. Environments, 3(2). https://doi.org/10.3390/environments3020010.
  • 6. Gwoździej-Mazur J., Świętochowski K. 2019. Non-Uniformity of Water Demands in a Rural Water Supply System. Journal of Ecological Engineering, 20(8), 245–251. https://doi.org/10.12911/22998993/111716
  • 7. Gwoździej-Mazur J., Świętochowski K. 2021. Evaluation of Real Water Losses and the Failure of Urban-Rural Water Supply System. Journal of Ecological Engineering, 22(1), 132–138. https://doi.org/10.12911/22998993/128862
  • 8. Gwoździej-Mazur J., Świętochowski K. 2018. Analysis of the water meter management of the urban-rural water supply system. E3S Web Conf., 44, 00051. https://doi.org/10.1051/e3sconf/20184400051
  • 9. Haestad et al. 2004. Advanced Water Distribution Modeling and Management. Bentley Institute Press, Waterbury.
  • 10. Hu, J. et al. 2018. Impacts of water quality on the corrosion of cast iron pipes for water distribution and proposed source water switch strategy. Water Research, 129, 428–435. https://doi.org/10.1016/j.watres.2017.10.065
  • 11. Zimoch I., Bartkiewicz E. 2018. Modeling of water age as an element supporting the management of the water supply system, Proceedings of ECOpole, 12(2), 611–620. https://doi.org/10.2429/proc.2018.12(2)064
  • 12. Kourbasis N. et al. 2020. Optimizing Water Age and Pressure in Drinking Water Distribution Networks. Environmental Sciences Proceedings, 2(1), 51. https://doi.org/10.3390/environsciproc2020002051
  • 13. Lambert A., Hirner W. 2000. Losses from water supply systems: standard terminology and recommended performance measures. International Water Association.
  • 14. Mallic K. et al. 2002.Determining Pipe Groupings for Water Distribution Networks. Journal of Water Resources Planning and Management-asce. J Water Resour Plan Man-Asce, 128. https://doi.org/10.1061/(ASCE)0733-9496(2002)128:2(130)
  • 15. Primayer Ltd. 2013. PrimeLog. User Manual. Primayer Ltd., Hampshire.
  • 16. Rossman L.A. 1994. EPANET users manual: project summary. Cincinnati, OH: U.S. Environmental Protection Agency, Risk Reduction Engineering Laboratory.
  • 17. Rozporządzenie Ministra Zdrowia z dnia 13 listopada 2015 r. w sprawie jakości wody przeznaczonej do spożycia przez ludzi. Dz.U. 2015, poz. 1989. Available at: http://prawo.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20150001989.
  • 18. Sunela M.I., Puust R. 2015. Real Time Water Supply System Hydraulic and Quality Modeling – A Case Study. Procedia Engineering, 119, 744–752. https://doi.org/10.1016/j.proeng.2015.08.928
  • 19. Ustawa dnia 7 czerwca 2001 r. o zbiorowym zaopatrzeniu w wodę i zbiorowym odprowadzaniu ścieków. Dz. U. 2001 Nr 72 poz. 747.
  • 20. Wichowski P. et al. 2021. Hydraulic and Technological Investigations of a Phenomenon Responsible for Increase of Major Head Losses in Exploited Cast-Iron Water Supply Pipes. Water, 13(11), 1604. https://doi.org/10.3390/w13111604
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-21aa9f22-59cd-4192-92dc-6da8a1d2c95f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.