PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On one-dimensional diffusion processes with moving membranes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Using the method of the classical potential theory, we construct the two-parameter Feller semigroup associated, on the given interval of the real line, with the Markov proces such that it is a result of pasting together, at some point of the interval, two ordinary diffusion processes given in sub-domains of this interval. It is assumed that the position on the line of boundary points of these sub-domains depends on the time variable. In addition, some variants of the general nonlocal boundary condition of Feller-Wentzell’s type are given in these points. The resulting process can serve as a one-dimensional mathematical model of the physical phenomenon of diffusion in media with moving membranes.
Rocznik
Strony
45--57
Opis fizyczny
Bibliogr. 13 poz.
Twórcy
  • Department of Mathematics, Czestochowa University of Technology Czestochowa, Poland
  • Department of Mathematics, Lviv Polytechnic National University Lviv, Ukraine
Bibliografia
  • [1] Wentzell, A.D. (1956). Semigroups of operators that correspond to a generalized differentia operator of second order. Dokl. Akad. Nauk SSSR (N.S.), 111(2), 269-272.
  • [2] Langer, H., & Schenk, W. (1983). Knotting of one-dimensional Feller processes. Math. Nachr., 113, 151-161.
  • [3] Portenko, M.I. (1995). Diffusion processes in media with membranes. Institute of Mathematics of the NAS of Ukraine.
  • [4] Kopytko, B.I., & Shevchuk, R.V. (2013). Diffusions in one-dimensional bounded domains with reflection, absorption and jumps at the boundary and at some interior point. J. Appl. Math. Comput. Mech., 12(1), 55-68.
  • [5] Kopytko, B.I., & Shevchuk, R.V. (2020). One-dimensional diffusion processes with moving membrane: partial reflection in combination with jump-like exit of process from membrane. Electron. J. Probab., 25, 1-21.
  • [6] Kamynin, L.I. (1964). A boundary-value problem in the theory of heat conduction with a non-classical boundary condition. Comput. Math. Math. Phys., 4(6), 33-59.
  • [7] Petruk, O., & Kopytko, B. (2016). Time-dependent shock acceleration of particles. Effect of the time-dependent injection, with application to supernova remnants. Monthly Notices of the Royal Astronomical Society, 462(3), 3104-3114.
  • [8] Pilipenko, A.Yu. (2012). On the Skorokhod mapping for equations with reflection and possible jump-like exit from a boundary. Ukrainian Math. J., 63(9), 1415-1432.
  • [9] Taira, K. (2014). Semigroups, Boundary Value Problems and Markov Processes. Springer Monographs in Mathematics.
  • [10] Arendt, W., Kunkel, S., & Kunze, M. (2016). Diffusion with nonlocal boundary conditions. J. Funct. Anal., 270(7), 2483-2507.
  • [11] Ladyzhenskaya, O.A., Solonnikov, V.A., & Ural’tseva, N.N. (1967). Linear and quasilinear equations of parabolic type. Nauka.
  • [12] Friedman, A. (2013). Partial differential equations of parabolic type. Dover Publications.
  • [13] Dynkin, E.B. (1963). Markov processes. Fiz.-Mat. Lit.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-21a68e25-06b4-4e5f-95c5-1ed7285f80d7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.