PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

A rotating piston engine with electric generator in serial hybrid propulsion system for use in light aircraft

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Analysis of the possibility of using a rotary engine based electric generator to propell a powered sailplane. The paper presents analysis of utilising Wankel type enine as a power input for an electric generator in the motor glider propulsion system. This generator would be a part of the propulsion system of a hybrid motor glider using the AOS 71 motor glider airframe. In the research, the rotational characteristics of the LCR 407ti wankel engine were determined experimentally. Driving torque run, power and fuel consumption were determined as a function of engine speed. The obtained results are presented in diagrams. The conceptual diagram of the hybrid drive is presented. The electric generator was selected and its effectiveness, as well as the effectiveness of entire propulsion system was assessed from the motor glider's performance point of view. Basing on the research conducted, conclusions were drawn and there were indicated the objectives and directions of further research on hybrid propulsion with specific aerodynamic and mass limitations of the aircraft.
Czasopismo
Rocznik
Strony
42--45
Opis fizyczny
Bibliogr. 17 poz., il. kolor., fot., wykr.
Twórcy
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology
autor
  • Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology
Bibliografia
  • [1] AYAR, M., GULEREN, K.M., KARAKOC, T. Motor selection process with AHP on mini electric UAV. International Symposium on Electric Aviation and Autonomous Systems ISEAS, Kiev 2018.
  • [2] BREJLE, B., MARTINS, J. Electric, hybrid, and turboelectric fixed-wing aircraft: a review of concepts, models, and design approaches. Progress in Aerospace Sciences. 2019, 104, 1-19. https://doi.org/10.1016/j.paerosci.2018.06.004
  • [3] DE VRIES, R. HOOGREEF, M., VOS R. Preliminary sizing of a hybrid-electric passenger aircraft featuring over-the-wing distributed-propulsion. American Institute of Aeronautics and Astronautics. 2019. https://doi.org/10.2514/6.2019-1811
  • [4] DONATEO, T., SPEDICANTO, L. Fuel economy of hybrid electric flight. Applied Energy. 2017, 206, 723-738. https://doi.org/10.1016/j.apenergy.2017.08.229
  • [5] FEFERMANN, Y., MAURY, C., CLELIA, C. et al. Hybrid-electric motive power systems for commuter transport applications. 30th Congress of the International Council of the Aeronautical Sciences. Daejeon 2016.
  • [6] FILLIPPONE, A. Flight performance of fixed and rotary wing aircraft. Butteeorth-Heinemann 2006, USA.
  • [7] FINGER, F.D., BRAUN, C., BIL, C. A review of configuration design for distributed propulsion transitioning VTOL air-craft. 2017 Asia-Pacific International Symposium on Aerospace Technology. Seoul 2017.
  • [8] FINGER, D.F., GÖTTEN, F., BRAUN, C. et al. On aircraft design under the consideration of hybrid-electric propulsion systems. ZHANG X. (ed.) The Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology (APISAT 2018). Lecture Notes in Electrical Engineering. 2019, 459. Springer. Singapore. https://doi.org/10.1007/978-981-13-3305-7_99
  • [9] FINGER, F.D., BRAUN, C., BIL, C. Case studies in initial sizing for hybrid-electric general aviation aircraft. 2018 AIAA/IEEE Electric Aircraft Technologies Symposium. 2018. https://doi.org/10.2514/6.2018-5005
  • [10] FINGER, F.D., BRAUN, C., BIL, C. Impact of engine failure constraints on the initial sizing of hybrid-electric GA aircraft. AIAA Scitech 2019 Forum, San Diego. https://doi.org/10.2514/6.2019-1812
  • [11] FINGER, D.F., BRAUN, C., BIL, C. Impact of electric propulsion technology and mission requirements on the performance of VTOL UAVs. CEAS Aeronautical Journal. 2019, 10, 827-843. https://doi.org/10.1007/s13272-018-0352-x
  • [12] KUŹNIAR, M. Wielokryterialna ocena doboru napędów lotniczych nowej generacji z wykorzystaniem metod energetycznych - PhD Thesis. Rzeszów 2021.
  • [13] MARIANOWSKI, J., FRĄCZEK, W. CZARNOCKI, F. Założenia podstawowe dla projektu motoszybowca AOS-H2. (not publish)
  • [14] MARIANOWSKI, J., TOMASIEWICZ, J., CZARNOCKI, F. Analiza masowa motoszybowca AOS-H2. (not publish)
  • [15] ORKISZ, M., KUŹNIAR, M. 3E - a new paradigm for the development of civil aviation. Combustion Engines. 2020, 181(2), 3-10. https://doi.org/10.19206/CE-2020-201
  • [16] EMRAX d.o.o. https://emrax.com/
  • [17] Wankel aircraft-engine. WANKEL AG. http://wankel-ag.de
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-21a40b32-4b61-48c7-858d-1a90b6db3b21
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.