PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Microstructure evolution and property analysis of commercial pure Al alloy processed by radial-shear rolling

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The features of microstructure formation and properties of commercial pure aluminum alloy (Al 99.5%) obtained by radial-shear rolling (RSR) method at the different heating temperatures of 25, 200, 250, 300 and 350 °C were examined. In this paper, the rods with diameter of 14 mm were obtained from initial billet with diameter of 60 mm in five passes. The microstructure analysis with electron backscatter diffraction (EBSD), measurements of microhardness HV over cross-section, and tension test for determination of mechanical properties were carried out for these rods. The FEM simulation of RSR process and calculation of Zener–Hollomon parameter (Z) were carried out with Software QFORM. The obtained rods have the gradient microstructure typical of RSR characterized by surface layer with ultrafine grain structure (UFG) and grain size from 0.3 to 5 µm. In the central part of rod, the fiber deformed structure with minimal fraction of recrystallized grains (< 5%) is formed. This combination is optimal for simultaneous achievement of high strength (UTS ~ 107–110 MPa; YS ~ 100–109 MPa; ~ 35–40 HV) and ductility (El ~ 15–30%). The most intensive growth of plastic properties is observed at rolling temperatures close to the temperature of the onset of recrystallization, it is associated with additional deformational heating of surface layers and the formation of partially recrystallized structure. The obtained distribution dependences of average size of dynamic recrystallized grain on Zener–Hollomon parameter showed that the decrease in parameter Z leads to the increase in size of recrystallized grain for RSR process.
Rocznik
Strony
674--683
Opis fizyczny
Bibliogr. 33 poz., rys., wykr.
Twórcy
autor
  • National University of Science and Technology “MISIS”, 4 Leninsky pr., Moscow 119049, Russia
  • National University of Science and Technology “MISIS”, 4 Leninsky pr., Moscow 119049, Russia
  • Baikov Institute of Metallurgy and Materials Science, 49 Leninsky pr., Moscow 119991, Russia
  • National University of Science and Technology “MISIS”, 4 Leninsky pr., Moscow 119049, Russia
  • National University of Science and Technology “MISIS”, 4 Leninsky pr., Moscow 119049, Russia
  • National University of Science and Technology “MISIS”, 4 Leninsky pr., Moscow 119049, Russia
Bibliografia
  • [1] Beletsky VM, Krivov GA. Aluminium alloys (Composition, properties, technology, application). Reference book. Kiev: "COM-INTEH". 2005.
  • [2] Totten GE, MacKenzie DS. Handbook of aluminium. Vol. 1. Physical metallurgy and processes. New York: Marcel Dekker Inc; 2003.
  • [3] Heinz A, Haszler A, Keidel C, Moldenhauer S, Benedictus R, Miller WS. Recent developments in aluminum alloys for aerospace applications. Mater Sci Eng A. 2000. https ://doi.org/10.1016/S0921 -5093(99)00674 -7.
  • [4] Williams JC, Starke EA. Progress in structural materials for aero-space systems. Acta Mater. 2003. https ://doi.org/10.1016/j.actamat.2003.08.023.
  • [5] Sheremet’ev VA, Kudryashova AA, Dinh XT, Galkin SP, Prokoshkin SD, Brailovskii V. Advanced technology for preparing bar from medical grade Ti-Zr-Nb superelastic alloy based on combination of radial-shear rolling and rotary forging. Metallurgist. 2019. https ://doi.org/10.1007/s1101 5-019-00793 -z.
  • [6] Skripalenko MM, Galkin SP, Karpov BV, Romantsev BA, Kaputkina LM, Danilin AV, Skripalenko MN, Patrin PV. Forming features and properties of titanium alloy billets after radial-shear rolling. Materials. 2019. https ://doi.org/10.3390/ma121 93179.
  • [7] Mashekov SA, Smailova GA, Alshynova AM, Uderbayeva AE, Sembaev NS, Zhauyt A. Structure formation of aluminum alloy D16 while rolling bars in the radial shear mill. Metalurgija. 2020;59:195–8.
  • [8] Naizabekov A, Arbuz A, Lezhnev S, Panin E, Volokitina I. The development and testing of a new method of qualitative analysis of the microstructure quality, for example of steel AISI 321 subjected to radial shear rolling. Phys Scr. 2019. https ://doi.org/10.1088/1402-4896/ab1e6 e.
  • [9] Galkin SP, Romantsev BA, Ta DX, Gamin YV. Resource-saving technology for production of round bars from used shaft of rolling railroad stock. Chernye Metally. 2018;4:20–7.
  • [10] Negodin DA, Galkin SP, Kharitonov EA, Karpov BV, Khar’kovskii DN, Dubovitskaya IA, Patrin PV. Testing of the technology of radial-shear rolling and predesigning selection of rolling minimills for the adaptable production of titanium rods with small cross sections under the conditions of the “CHMP” JSC. Metallurgist. 2019. https ://doi.org/10.1007/s1101 5-019-00765 -3.
  • [11] Skripalenko MM, Romantsev BA, Kaputkina LM, Galkin SP, Skripalenko MN, Cheverikin VV. Study of transient and steady-state stages during two-high and three-high screw rolling of a 12Kh18N10T steel workpiece. Metallurgist. 2019. https ://doi.org/10.1007/s1101 5-019-00832 -9.
  • [12] Karpov BV, Patrin PV, Galkin SP, Kharitonov EA, Karpov IB. Radial-shear rolling of titanium alloy VT-8 bars with controlled structure for small diameter ingots (≤200 mm). Metallurgist. 2018. https ://doi.org/10.1007/s1101 5-018-0581-6.
  • [13] Romancev BA, Goncharuk AV, Aleshchenko AS, Gamin YV. Production of hollow thick-walled profiles and pipes made of titanium alloys by screw rolling. Russ J Non-ferrous Metals. 2015. https ://doi.org/10.3103/S1067 82121 50501 32.
  • [14] Sheremetyev V, Kudryashova A, Cheverikin V, Korotitskiy A, Galkin S, Prokoshkin S, Brailovski V. Hot radial shear rolling and rotary forging of metastable beta Ti-18Zr-14Nb (at. %) alloy for bone implants: microstructure, texture and functional properties. J Alloy Compd. 2019. https ://doi.org/10.1016/j.jallcom.2019.06.041.
  • [15] Dobatkin S, Galkin S, Estrin Y, Serebryany V, Diez M, Martynenko N, Lukyanova E, Perezhogin V. Grain refinement, texture, and mechanical properties of a magnesium alloy after radial-shear rolling. J Alloy Compd. 2019. https ://doi.org/10.1016/j.jallcom.2018.09.065.
  • [16] Akopyan TK, Belov NA, Aleshchenko AS, Galkin SP, Gamin YV, Gorshenkov MV, Cheverikin VV, Shurkin PK. Formation of the gradient microstructure of a new Al alloy based on the Al-Zn-Mg-Fe-Ni system processed by radial-shear rolling. Mater Sci Eng A. 2019. https ://doi.org/10.1016/j.msea.2019.01.029.
  • [17] Gamin Y, Akopyan T, Koshmin A, Dolbachev A, Aleshchenko A, Galkin SP, Romantsev BA. Investigation of the microstructure evolution and properties of A1050 aluminum alloy during radial-shear rolling using FEM analysis. Int J Adv Manuf Technol. 2020. https ://doi.org/10.1007/s0017 0-020-05227 -8.
  • [18] Akopyan TK, Gamin YV, Galkin SP, Prosviryakov AS, Aleshchenko AS, Noshin MA, Koshmin AN, Fomin AV. Radial-shear rolling of high-strength aluminum alloys: Finite element simulation and analysis of microstructure and mechanical properties. Mater Sci Eng A. 2020. https ://doi.org/10.1016/j.msea.2020.13942 4.
  • [19] Gamin YV, Romantsev BA, Pashkov AN, Patrin PV, Bystrov IA, Fomin AV, Kadach MV. Obtaining hollow semifinished products based on copper alloys for electrical purposes by means of screw rolling. Russ J Non-ferrous Metals. 2020. https ://doi.org/10.3103/S1067 82122 00200 54.
  • [20] Ding XF, Shuang YH, Liu QZ, Zhao CJ. New rotary piercing process for an AZ31 magnesium alloy seamless tube. Mater Sci Technol. 2018. https ://doi.org/10.1080/02670 836.2017.13939 98.
  • [21] Aleshchenko AS, Gamin YV, Chan BK, Tsyutsyura VY. Wear features of working tools during piercing of high-temperature alloys. Chernye Metally. 2018;8:63–70.
  • [22] Shatalov RL, Medvedev VA. Effect of deformed workpiece temperature inhomogeneity on mechanical properties of thin-walled steel vessels during treatment in a rolling and pressing line. Metallurgist. 2019. https ://doi.org/10.1007/s1101 5-019-00807 -w.
  • [23] Romantsev BA, Gamin YV, Goncharuk AV, Aleshchenko AS. Innovative equipment for producing costeffective hollow billets for mechanical-engineering parts of small diameter. Metallurgist. 2017. https ://doi.org/10.1007/s1101 5-017-0480-2.
  • [24] Quan GZ. Characterization for dynamic recrystallization kinetics based on stress-strain curves. In: Wilson P, editor. Recent developments in the study of recrystallization. London: IntechOpen; 2012. https ://doi.org/10.5772/54285.
  • [25] Gourdet S, Montheillet F. A model of continuous dynamic recrystallization. Acta Mater. 2003. https ://doi.org/10.1016/S1359-6454(03)00078 -8.
  • [26] Gourdet S, Montheillet F. An experimental study of the recrystallization mechanism during hot deformation of aluminium. Mater Sci Eng A. 2000. https ://doi.org/10.1016/S0921 -5093(00)00733-4.
  • [27] Talamantes-Silva J, Abbod MF, Cabrera ESP, Howard IC, Beynon JH, Sellars CM, Linkens DA. Microstructure modelling of hot deformation of Al-1%Mg alloy. Mater Sci Eng A. 2009. https ://doi.org/10.1016/j.msea.2009.06.046.
  • [28] Hallberg H. Influence of process parameters on grain refinement in AA1050 aluminum during cold rolling. Int J Mech Sci. 2013. https ://doi.org/10.1016/j.ijmec sci.2012.11.016.
  • [29] Sun ZC, Wu HL, Cao J, Yin ZK. Modeling of continuous dynamic recrystallization of Al-Zn-Cu-Mg alloy during hot deformation based on the internal-state-variable (ISV) method. Int J Plast. 2018. https ://doi.org/10.1016/j.ijpla s.2018.03.002.
  • [30] Doherty RD, Hughes DA, Humphreys FJ, Jonas JJ, Juul Jensen D, Kassner ME, King WE, McNelley TR, McQueen HJ, Rollett AD. Current issues in recrystallization: a review. Mater Sci Eng A. 1997. https ://doi.org/10.1016/S0921 -5093(97)00424 -3.
  • [31] Roy RK. Recrystallization behavior of commercial purity aluminium alloys. In: Monteiro WA, editor. Light metal alloys applications. London: IntechOpen; 2013. https ://doi.org/10.5772/58385.
  • [32] Huang K, Logé RE. A review of dynamic recrystallization phenomena in metallic materials. Mater Des. 2016. https ://doi.org/10.1016/j.matde s.2016.09.012.
  • [33] Ji H, Cai Z, Pei W, Huang X, Lu Y. DRX behavior and microstructure evolution of 33Cr23Ni8Mn3N: experiment and finite element simulation. J Mater Res Technol. 2020. https ://doi.org/10.1016/j.jmrt.2020.02.059.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-21a36a0c-fa7c-4af5-8e94-8c840c15fdd9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.