PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Understanding the collection behavior of gangue minerals in fine flake graphite flotation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Flotation is one of the most common and effective methods for the beneficiation of natural graphite resources. However, the upgrading efficiency of flotation is always finite due to the undesirable collection of gangue minerals. In this work, the collecting mechanism of three typical gangue minerals, including mica, quartz, and feldspar, in fine flake graphite flotation was investigated. Results of batch flotation tests for single-minerals and artificial mixtures confirmed the enhanced collection of gangues in the presence of graphite particles. Contact angle and zeta potential results and theoretical calculations of the interaction between graphite and gangue particles based on typical DLVO theory indicated that it is impossible to collect gangue minerals by true flotation or through heterocoagulation with graphite particles. The fitting results of accumulated gangue recoveries and accumulated water recoveries using the Warren method demonstrated that most gangue minerals entered the concentrate through entrainment, with a small proportion by bubble inclusions.
Słowa kluczowe
Rocznik
Strony
101--112
Opis fizyczny
Bibliogr. 40 poz., rys., tab., wykr.
Twórcy
autor
  • School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
autor
  • School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
  • School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
  • Hubei Key Laboratory of Mineral Resources Processing & Environment, Wuhan 430070, China
  • School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
autor
  • School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
autor
  • School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
autor
  • School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
Bibliografia
  • ADAIR, J.H., SUVACI, E., SINDEL, J., 2001.Surface and Colloid Chemistry. In: Buschow KHJ, Cahn RW, Flemings MC, Ilschner B, Kramer EJ, Mahajan S, et al., (editors). Encyclopedia of Materials: Science and Technology. Oxford: Elsevier, p. 1-10.
  • BERGSTRÖM, L., 1997.Hamaker constants of inorganic materials. Advances in Colloid and Interface Science.70:125-69.
  • BU, X.N., ZHANG, T.T., CHEN, Y.R., PENG, Y.L., XIE, G.Y., WU, E.D., 2018.Comparison of mechanical flotation cell and cyclonic microbubble flotation column in terms of separation performance for fine graphite. Physicochemical Problems of Mineral Processing, 54, 732-40.
  • BU, X.N., ZHAGN, T.T., PENG, Y.L., XIE, G.Y., WU, E.D., 2018.Multi-Stage Flotation for the Removal of Ash from Fine Graphite Using Mechanical and Centrifugal Forces. Minerals. 8.
  • CHELGANI, S.C., RUDOLPH, M., KRATXSH, R., SANDMANN, D., GUTZMER, J., 2016. A Review of Graphite Beneficiation Techniques. Mineral Processing and Extractive Metallurgy Review. 37, 58-68.
  • CHEN, Z., LIU, Y., ZHANG, Y., SHEN, F., YANG, G., WANG, L., et al., 2018. Ultrafine layered graphite as an anode material for lithium ion batteries. Materials Letters, 229, 134-7.
  • CERMAK, M., BAHRAMI, M., KENNA, J.,2018. Natural Graphite Sheet Heat Sinks: A Review of the Material Properties, Benefits, and Challenges. PROCEEDINGS 2018 34TH ANNUAL SEMICONDUCTOR THERMAL MEASUREMENT, MODELLING & MANAGEMENT SYMPOSIUM (SEMI-THERM), p. 55-62.
  • FARAHAT, M., HIRAJIMA, T., SASAKI, K., DOI, K., 2009. Adhesion of Escherichia coli onto quartz, hematite and corundum: Extended DLVO theory and flotation behavior. Colloids and Surfaces B: Biointerfaces. 74, 140-9.
  • GOMEZ-FLORES, A., SOLONGO, SK., HEYES, GW., ILAYS, S., KIM, H., 2020. Bubble - particle interactions with hydrodynamics, XDLVO theory, and surface roughness for flotation in an agitated tank using CFD simulation.Minerals Engineering.152.
  • GUANCHAENG, J., 2018.Chapter 2 - Evaluation Methods and Influencing Factors of Gas Wettability. In: Guancheng J, (editor). Gas Wettability of Reservoir Rock Surfaces with Porous Media: Gulf Professional Publishing, p. 29-84.
  • HAMAKER, H.C., 1937. The London—van der Waals attraction between spherical particles. Physica. 4, 1058-72.
  • HEYES,G.W.,TRAHAR,W.J.,1977.The natural flotability of chalcopyrite. International Journal of Mineral Processing.317-344.
  • HU, Z.Q., WANG, Z.S., CHEN, J.G., FAN B.L., QI, X, MA J., GU, Y.Y., SONG, L., 2014. Effects of Surface-Modified Graphite on Tribological Properties and Thermal Conductivity of Fabric Self-Lubricating Liner. Asian Journal of Chemistry. 26, 5712-6.
  • ISRAELACHVILI,J.N., 1992. Intermolecular and surface forces. ACADEMIC PR.
  • JARA, A,D,, BETEMARIAM, A., WOLDETINSAE, G., KIM, J.Y., 2019.Purification, application and current market trend of natural graphite: A review. International Journal of Mining Science and Technology, 29, 671-89.
  • JIN, M., XIE, G., XIA, W., PENG, Y., 2018.Flotation Optimization of Ultrafine Microcrystalline Graphite Using a BoxBehnken Design. International Journal of Coal Preparation and Utilization, 38, 281-9.
  • LI, H.Q., FENG, Q.M., YANG, S.Y., OU, L.M., LU, Y., 2014. The entrainment behaviour of sericite in microcrystalline graphite flotation. International Journal of Mineral Processing, 127, 1-9.
  • LI, H.Q., OU, L.M., FENG, Q.M., CHANG, Z.Y., 2015. Recovery mechanisms of sericite in microcrystalline graphite flotation. Physicochemical Problems of Mineral Processing, 51, 387-400
  • MAURER,S., MERSMANN, A., PEUKERT,W., 2001. Henry coefficients of adsorption predicted from solid Hamaker constants. Chemical Engineering Science, 56, 3443-53.
  • MIETTINENA, T., RALXTONB,J., FORNASIERB, D.,2009. The limits of fine particle flotation. Minerals Engineering, 420-477.
  • MITCHELL, T.K., NGUYEN A.V., EVANS, G.M., 2005.Heterocoagulation of chalcopyrite and pyrite minerals in flotation separation. Advances in Colloid and Interface Science, 114-115, 227.
  • ROE-HOAN, Y,. LAIQUN, M,.1996. Application of Extended DLVO Theory, IV. Journal of colloid and interface science, 184(1), 613-626.
  • OKADA, M., OHTA, N., YOSHIMOTO, O., TATSUMI, M., INAGAKI, M., 2017.Review on the high-temperature resistance of graphite in inert atmospheres. Carbon, 116, 737-43.
  • ONEY, O., SAMANLI, S., 2016. Determination of optimal flotation conditions of low-grade graphite ore. In: Kowalczuk PB, Drzymala J, (editors). Mineral Engineering Conference, 8..
  • PENG, W.J., WANG, C., HU, Y., SOMG S.X., 2017. Effect of droplet size of the emulsified kerosene on the floatation of amorphous graphite. Journal of Dispersion Science and Technology, 38, 889-94.
  • PENG, W.J., QIU, Y.S., ZHANG, L.Y., GUANG, J.F., SOMG, S.X.,2017. Increasing the Fine Flaky Graphite Recovery in Flotation via a Combined MultipleTreatments Technique of Middlings, Minerals.7.
  • QIU, Y.S., YU, Y.F., ZHANG, L.Y., QIAN, Y.P., OUYANG, Z.J., 2016. An Investigation of Reverse Flotation Separation of Sericite from Graphite by Using a Surfactant: MF, Minerals. 6.
  • SUN, K., QIU, Y., ZHANG, L.Y., 2017.Preserving Flake Size in an African Flake Graphite Ore Beneficiation Using a Modified Grinding and Pre-Screening Process. Minerals, 7, 115.
  • SURE, J., RAVI SHANKAR, A., RAMYA, S., KAMACHI MUDALI, U., 2012.Molten salt corrosion of high density graphite and partially stabilized zirconia coated high density graphite in molten LiCl–KCl salt. Ceramics International,38, 2803-12.
  • WAKDMATSU, T., NUMATA, Y., 1991.FLOTATION OF GRAPHITE. Minerals Engineering, 4, 975-82.
  • WAN, Q.H., 1997. Effect of Electrical Double-Layer Overlap on the Electroosmotic Flow in Packed-Capillary Columns.Analytical Chemistry, 69, 361-3.
  • WANG, L., PENG, Y., RUNGE, K., BRADSHAW, D., 2015. A review of entrainment: Mechanisms, contributing factors and modelling in flotation. Minerals Engineering, 70, 77-91.
  • WANG, L., PENG, Y,, RUNGE, K., 2016. Entrainment in froth flotation: The degree of entrainment and its contributing factors. Powder Technology, 288, 202-11.
  • WANG, B., PENG, Y., 2013.The behaviour of mineral matter in fine coal flotation using saline water. Fuel. 109:309-15.
  • WARREN, L.J., 1985. Determination of the contributions of true flotation and entrainment in batch flotation tests.International Journal of Mineral Processing, 14, 33-44.
  • WENG, X.Q., LI, H.Q., SONG. S.X., LIU, Y.Y., 2017. Reducing the Entrainment of Gangue Fines in Low GradeMicrocrystalline Graphite Ore Flotation Using Multi-Stage Grinding-Flotation Process, Minerals. 7.
  • YANGSHUAI, Q., ZHANG, L., SUN, K., LI, Y., YUPENG, Q., 2019. Reducing entrainment of sericite in fine flaky graphite flotation using polyaluminum chloride. Physicochemical Problems of Mineral Processing, 55, 1108-19.
  • YANGSHUAI, Q.,YOMGFU, Y., LINGYAN, Z., WEIJUN, P., YUPENG, Q., 2017. Dispersion and agglomeration mechanism of flaky graphite particles in aqueous solution. Journal of Dispersion Science and Technology, 38, 796-800.
  • YU,Y.X.,MA,L.Q.,XU,H.X.,SUN, Z.J.,ZHANG.Z.J, YE,G.C,.2018 DLVO theoretical analyses between montmorillonite and fine coal under different pH and divalent cations. Powder Technology, 330, 147-151.
  • ZHENG, X., JOHNSON, N.W., FRANZIDIS, J.P., 2006. Modelling of entrainment in industrial flotation cells: Water recovery and degree of entrainment. Minerals Engineering, 19, 1191-203
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-219fb05c-780e-4586-be5a-5754068a1cce
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.