PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Health risk profile for terrestrial radionuclides in soil around artisanal gold mining area at Alsopag, Sudan

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study shows the assessment of radiation hazard parameters due to terrestrial radionuclides in the soil around artisanal gold mining for addressing the issue of natural radioactivity in mining areas. Hence, the levels 238U, 232Th, 40K and 226Ra in soil (using gamma spectrometry), 222Rn in soil and 222Rn in air were determined. Radiation hazard parameters were then computed. These include absorbed dose D, annual effective dose E, radium equivalent activity Raeq, external hazard Hex, annual gonadal dose equivalent hazard index AGDE and excess lifetime cancer risk ELCR due to the inhalation of radon (222Rn) and consumption of radium (226Ra) in vegetation. Uranium (238U), thorium (232Th) and potassium (40K) averages were, respectively, 26, 36 and 685 Becquerel per kilogram (Bq kg-1). Soil radon (4671 Bq m-3) and radon in air (14.77 Bq m-3) were found to be less than worldwide data. Nevertheless, the average 40K concentration was 685 Bq kg-1. This is slightly higher than the United Nations Scientific Committee on the Effects of Atomic Radiation average value of 412 Bq kg-1. The obtained result indicates that some of the radiation hazard parameters seem unsavory. The mean value of absorbed dose rate (62.49 nGy h-1) was slightly higher than average value of 57 nGy h-1 (~ 45% from 40K), and that of AGDE (444 lSv year-1) was higher than worldwide average reported value (300 lSv year-1). This study highlights the necessity to launch extensive nationwide radiation protection program in the mining areas for regulatory control.
Czasopismo
Rocznik
Strony
673–--681
Opis fizyczny
Bibliogr. 38 poz.
Twórcy
autor
  • Physics Department, Committee on Radiation and Environmental Pollution Protection, College of Science, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh 11623, Saudi Arabia
  • Sudan Atomic Energy Commission (SAEC), P.O. Box 3001, Khartoum, Sudan
autor
  • Sudan Atomic Energy Commission (SAEC), P.O. Box 3001, Khartoum, Sudan
  • Department of Physics, Taibah University, PO Box 30002, Al-Madinah Aalmunawarrah 41477, Saudi Arabia
  • Physics Department, Committee on Radiation and Environmental Pollution Protection, College of Science, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh 11623, Saudi Arabia
  • Physics Department, Committee on Radiation and Environmental Pollution Protection, College of Science, Al Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh 11623, Saudi Arabia
autor
  • Sudan Atomic Energy Commission (SAEC), P.O. Box 3001, Khartoum, Sudan
  • Sudan Atomic Energy Commission (SAEC), P.O. Box 3001, Khartoum, Sudan
  • Department of Mineral Wealth, Faculty of Petroleum and Minerals, Al Neelain University, P.O. Box 21702, Khartoum, Sudan
autor
  • Sudan Atomic Energy Commission (SAEC), P.O. Box 3001, Khartoum, Sudan
  • Department of Radiological Sciences and Medical Imaging, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
Bibliografia
  • 1. Abdalhamid S, Salih I, Idriss H (2017) Gamma absorbed radiation dose in Marrah mountain series, western Sudan. Environ Earth Sci 76(20):672
  • 2. Ademola AK, Bello AK, Adejumobi AC (2014) Determination of natural radioactivity and hazard in soil samples in and around gold mining area in Itagunmodi, south-western, Nigeria. J Radiat Res Appl Sci 7(3):249–255
  • 3. Anjos RM, Umisedob N, da Silva AAR, Estellitaa L, Rizzottoc M, Yoshimura EM, Velascoc H, Santos AMA (2010) Occupational exposure to radon and natural gamma radiation in the La Carolina, a former gold mine in San Luis Province, Argentina. J Environ Radioact 101(2):153–158
  • 4. Bashier EH, Salih I, Sam AK (2012) GIS predictive mapping of terrestrial gamma radiation in the Northern State, Sudan. Radiat Prot Dosim 151(3):500–510. https://doi.org/10.1093/rpd/ncs022
  • 5. Chandrasekaran A, Ravisankar R, Senthilkumar G, Thillaivelavan K, Dhinakaran B, Vijayagopal P, Venkatraman B (2014) Spatial distribution and lifetime cancer risk due to gamma radioactivity in Yelagiri Hills, Tamilnadu, India. Egypt J Basic Appl Sci 1(1):38–48
  • 6. Chougankar MP, Eppen KP, Ramachandran TV (2003) Profiles of doses to population living in the high background radiation areas in Kerala. J Environ Radioact 71:275–297
  • 7. Clamp GE, Pritchard J (1998) Investigation of fault position and sources of radon by measurement of 238U decay series radionuclide activity in soil samples. Environ Geochem Health 20:39–44
  • 8. Darko EO, Tetteh GK, Akaho EHK (2005) Occupational radiation exposure to norms in a gold mine. Radiat Prot Dosim 114(4):538–545
  • 9. Doyi I, Oppon OC, Glover ET, Gbeddy G, Kokroko W (2013) Assessment of occupational radiation exposure in underground artisanal gold mines in Tongo, Upper East Region of Ghana. J Environ Radioact 12:77–82
  • 10. Durand JF (2012) The impact of gold mining on the Witwatersrand on the rivers and karst system of Gauteng and North West Province, South Africa. J Afr Earth Sci 68:24–43
  • 11. Fadol N, Idriss H, Salih I, Ragab NA, Osman S, Sam AK (2018) Radiological hazard indices of granitic rocks used for the construction of buildings from Nuba Mountains Sudan. Radiat Prot Dosim. https://doi.org/10.1093/rpd/ncx295
  • 12. FAO 1977 (Food and Agriculture Organization of the United Nations), Review of food consumption surveys, Recommendations, Africa, vol 102
  • 13. Gulan L, Milenkovic B, Zeremski T, Milic G, Vuckovic B (2017) Persistent organic pollutants, heavy metals and radioactivity in the urban soil of Priština City, Kosovo and Metohija. Chemosphere 171:415–426
  • 14. Hendry JH, Simon SL, Wojcik A, Sohrabi M, Burkart W, Cardis E, Laurier D, Tirmarche M, Hayata I (2009) Human exposure to high natural background radiation: what can it teach us about radiation risks? J Radiol Prot 29(2A):A29
  • 15. IAEA (1996a) International basic safety for protection against ionizing radiation and for the safety of radiation sources, Vienna, Safety Series
  • 16. IAEA (1996b) International Atomic Energy Agency. Radiation Safety. IAEA Division of Public Information, 96-00725 IAEA/PI/A47E
  • 17. Idriss H, Salih I, Alaamer AS, Abdelgali MY, Salih SA, Hasan AM, ELtahir MA, Ahmed MM (2014) Characterization of 222Rn and meteorological parameters in Uro house at South Kordofan state. Indoor Built Environ 72:335–339
  • 18. Idriss H, Salih I, Alaamer AS, Saleh A, Abdelgali MY (2016) Environmental-impact assessment of natural radioactivity around a traditional mining area in Al-Ibedia, Sudan. Arch Environ Contam Toxicol 70(4):783–792
  • 19. Institute of Geological Sciences (IGS) (Great Britain), Vail JR (1977) Outline of the geology and mineral deposits of the Democratic Republic of the Sudan and adjacent areas
  • 20. International Commission on Radiological Protection ICRP (1990) Recommendations of the ICRP, Pergamon Press, New York, ICRP Pub No. 60
  • 21. International Commission on Radiological Protection (ICRP) (1991) Recommendation of the International Commission on radiological protection, Pergamon Press, Oxford publication 60, Annal of the ICRP 210-3
  • 22. Navarrete M, Zúñiga MA, Espinosa G, Golzarri JI (2014) Radioactive contamination factor (RCF) obtained by comparing contaminant radioactivity (137Cs) with natural radioactivity (40 K) in marine sediments taken up from mexican sea waters. World J Nucl Sci Technol 4:158–162
  • 23. Odumo OB, Mustapha AO, Patel JP, Angeyo HK (2011) Radiological survey and assessment of associated activity concentration of the naturally occurring radioactive materials (NORM) in the Migori artisanal gold mining belt of southern Nyanza, Kenya. Appl Radiat Isot 69(6):912–916
  • 24. Pappa FK, Tsabaris C, Ioannidou A, Patiris DL, Kaberi H, Pashalidis I, Vlastou R (2016) Radioactivity and metal concentrations in marine sediments associated with mining activities in Ierissos Gulf, North Aegean Sea, Greece. Appl Radiat Isot 116:22–33
  • 25. Patiris DL et al (2016) Activity concentration and spatial distribution of radionuclides in marine sediments close to the estuary of Shatt al-Arab/Arvand Rud River, the Gulf. J Environ Radioact 157:1–15
  • 26. Saleh H, Shayeb MA (2014) Natural radioactivity distribution of southern part of Jordan (Ma′an) Soil. Ann Nucl Energy 65:184–189
  • 27. Salih I, Ali S, Ali S, Idriss H (2014) Radiation exposure of workers in storage areas for building materials. J Taibah Univ Sci 8(4):394–400
  • 28. Senthilkumar RD, Narayanaswamy R (2016) Assessment of radiological hazards in the industrial effluent disposed soil with statistical analyses. J Radiat Res Appl Sci 9(4):449–456
  • 29. Subramanian V (ed) (2015) Surface and sub-surface water in Asia: issues and perspectives. IOS Press, Amsterdam
  • 30. UNSCEAR (1977) United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and effects of ionizing radiation. Report to the General Assembly, with Annexes, English, Publishing and library section, United Nations office
  • 31. UNSCEAR (1982) Sources and effects of ionizing radiation. UNSCEAR, New York
  • 32. UNSCEAR (1988) Sources and effects of ionizing radiation. UNSCEAR, New York
  • 33. UNSCEAR (1993) Sources and effects of ionizing radiation. UNSCEAR, New York
  • 34. UNSCEAR (United Nations Scientific Committee on the Effects of Atomic) (2000) Exposures from natural sources. Report to General Assembly. Annex B, New York
  • 35. UNSCEAR (United Nations Scientific Committee on the Effect of Atomic Radiation) (2008) Sources and effects of ionizing radiation. Report to the General Assembly, New York, United Nation
  • 36. WHO (2009) World Health Organization report: handbook on indoor radon: a public health perspective
  • 37. WHO (2015) World Health Organization report: world health statistics. Health Organization
  • 38. Winde F, Brugge D, Nidecker A, Ruegg U (2017) Uranium from Africa—an overview on past and current mining activities: re-appraising associated risks and chances in a global context. J Afr Earth Sci 129:759–778
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-219d30af-dc55-42bf-bf13-6fd83332d632
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.