PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Effect of Heat Treatment on the Microstructure Evolution and Properties of an Age-Hardened Cu-3Ti-2Mg Alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study investigates the effect of heat treatment on the microstructure evolution and properties of an age-hardened Cu-3Ti-2Mg alloy. The precipitated Cu2Mg and β'-Cu4Ti phases consequently yield a depletion of the Cu matrix in regards to Ti and Mg solutes, which enhances the electrical conductivity. The Cu2Mg Laves phase and β'-Cu4Ti phase precipitates increase the hardness of the alloy due to the consistency and coherency of the later phase. However, the decrease of hardness is mainly associated with the coarse microstructures, that can be formed due to the phase transformation from metastable β'-Cu4Ti phase to more stable Cu3Ti phase. In the range of experiments, the optimum process is solution treatment at 700°C for 4 h, with subsequent age-hardening at 450°C for 4 h. The electrical conductivity, hardness, tensile strength, and elongation of the Cu-3Ti-2Mg alloy were 15.34 % IACS, 344 HV, 533 MPa, and 12%, respectively.
Twórcy
autor
  • Xi’an University of Technology, School of Materials Science and Engineering, Shaanxi Province Key Laboratory of Electrical Materials and Infiltration Technology, Xi’an 710048, P.R. China
autor
  • Xi’an University of Technology, School of Materials Science and Engineering, Shaanxi Province Key Laboratory of Electrical Materials and Infiltration Technology, Xi’an 710048, P.R. China
autor
  • Xi’an University of Technology, School of Materials Science and Engineering, Shaanxi Province Key Laboratory of Electrical Materials and Infiltration Technology, Xi’an 710048, P.R. China
autor
  • Xi’an University of Technology, School of Materials Science and Engineering, Shaanxi Province Key Laboratory of Electrical Materials and Infiltration Technology, Xi’an 710048, P.R. China
Bibliografia
  • [1] S. Li, Z. Li, Z. Xiao, S.H. Li, L.N. Shen, Q.Y. Dong, Mater. Sci. Eng. A 650 (5), 345-353 (2016).
  • [2] L. Gomidželović, E. Požega, A. Kostov, N. Vuković, V. Krstić, D. Živković, L. Balanović, T. Nonfer. Metal. Soc. 25 (8), 2630-2636 (2015).
  • [3] A. Urbańczyk-Gucwa, A. Brzezińska, K. Rodak, Arch. Metall. Mater. 63 (4), 2061-2066 (2018).
  • [4] K. Tian, B. Tian, A.A. Volinsky, Y. Zhang, Y. Liu, Y. Du, Arch. Metall. Mater. 63 (2), 875-882 (2018).
  • [5] W.A. Soffa, D.E. Laughlin, Prog. Mater. Sci. 49 (3-4), 347-366 (2004).
  • [6] E. Celik, A.K. Aslan, Arch. Metall. Mater. 63 (1), 299-305 (2018).
  • [7] V. Lebreton, D. Pachoutinski, Y. Bienvenu, Mater. Sci. Eng. A 508 (1-2), 83-92 (2009).
  • [8] J. Dutkiewicz, Met. Technol. 5 (1), 333-340 (1978).
  • [9] S. Nagarjuna, K. Balasubramanian, D.S. Sarma, Radiother. Oncol. 36 (8), 1058-1066 (1995).
  • [10] X.H. Wang, C.Y. Chen, T.T. Guo, J.T. Zou, X.Y. Yang, J. Mater. Eng. Perform. 24 (7), 2738-2743 (2015).
  • [11] J. Liu, X.H. Wang, Q.N. Ran, G. Zhao, X.X. Zhu, T. Nonfer. Metal. Soc. 26 (12), 3184-3188 (2016).
  • [12] R. Markandeya, S. Nagarjuna, D.S. Sarma, Mater. Sci. Eng. A 57(4-5), 348-357 (2006).
  • [13] R. Markandeya, S. Nagarjuna, D.S. Sarma, J. Mater. Eng. Perform. 16 (5), 640-646 (2007).
  • [14] L. Chen, J.N. Han, B.W. Zhou, Y.Y. Xue, F. Jia, X.G. Zhang, T. Nonfer. Metal. Soc. 24 (4), 1046-1052 (2014).
  • [15] K. Maki, Y. Ito, H. Matsunaga, H. Mori, Scripta Mater. 68 (10), 777-780 (2013)
  • [16] G. Yang, Z. Li, Y. Yuan, Q. Lei, J. Alloy Compd. 640 (15), 347-354 (2015).
  • [17] R. Monzen, C. Watanabe, Mater. Sci. Eng. A 483-484 (15), 117-119 (2008).
  • [18] R. Markandeya, S. Nagarjuna, D.S. Sarma, Mater. Sci. Eng. A 371 (1-2), 291-305 (2004).
  • [19] R. Markandeya, S. Nagarjuna, D.V.V. Satyanarayana, D.S. Sarma, Mater. Sci. Eng. A 428 (1-2), 233-243 (2006).
  • [20] S. Semboshi, S. Sato, M. Ishikuro, K. Wagatsuma, A. Iwase,T. Takihiro, Metall. Mater. Trans. A 45 (8), 3401-3411 (2014).
  • [21] S. Nagarjuna, K. Balasubramanian, D.S. Sarma, J. Mater. Sci. 34 (12), 2929-2942 (1999).
  • [22] R. Markandeya, S. Nagarjuna, D.S. Sarma, J. Mater. Sci. 41 (4), 1165-1174 (2006).
  • [23] R. Markandeya, S. Nagarjuna, D.S. Sarma, Mater. Charact. 57 (4-5), 348-357 (2006).
  • [24] R. Markandeya, S. Nagarjuna, D.S. Sarma, Mater. Charact. 54 (4-5), 360-369 (2005).
  • [25] S. Semboshi, T. Al-kassab, R. Gemma, R. Kirchheim, Ultramicroscopy 109 (5), 593-598 (2009).
  • [26] F.L. Wang, Y.P. Li, K. Wakoh, Y. Koizumi, A. Chiba, Mater. Design 61, 70-74 (2014).
  • [27] J. Liu, X.H. Wang, T.T. Guo, J.T. Zou, X.Y. Yang, Int. J. Min. Met. Mater. 22 (11), 1199-1204 (2015).
  • [28] M. Sobhani, A. Mirhabibi, H. Arabi, R.M.D. Brydson, Mater. Sci. Eng. A 577 (10), 16-22 (2013).
  • [29] I.S. Batra, A. Laik, G.B. Kale, G.K. Dey, U.D. Kulkarni, Mater. Sci. Eng. A 402 (1-2), 118-125 (2015).
Uwagi
1. This research was supported by the National Natural Science Foundation of China (No. 51605146), Key Program of the National Natural Science Foundation of China (U1502274).
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-219c66d5-cb9c-4646-9358-c67ea6776c90
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.