PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of chalcogenide solar cells : importance of CdS window layer

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The solar photovoltaic technology is one of the renewable technologies with the potential to shape a future-proof, reliable, scalable and affordable electricity system. It is important to provide better resources for any upcoming technology. CdS/CdTe thin films have long been considered as one enticing option for reliable and cost-effective solar cells to be developed. N-type CdS as a transparent window layer in heterojunction structures is one of the best choices for CdTe cells. In a solar cell structure, window layer material plays a very crucial role to improve its performance. For this reason, this review focuses on the basic and significant aspects such as importance of the window layer thickness, degradation effect, use of nano-wire arrays, and an ammonia-free process to deposit the window layer. Also, an attempt has been made to analyze various processes improving window layer properties. Necessary discussions have been included to review the impact of solar cell parameters on the above aspects. It is anticipated that this review article will fulfill the requirement of knowledge to be used in the fabrication of CdS/CdTe solar cells.
Słowa kluczowe
Rocznik
Strony
43--63
Opis fizyczny
Bibliogr. 172 poz., wykr., rys., tab.
Twórcy
autor
  • Thin Film Laboratory, Department of Physics, National Institute of Technology G E Road, Raipur – 492 010 India
autor
  • Thin Film Laboratory, Department of Physics, National Institute of Technology G E Road, Raipur – 492 010 India
Bibliografia
  • [1] Chornet, E. & Czernik, S. Harnessing hydrogen, Nature 418, 928-929 (2002). https://doi.org/10.1038/418928a.
  • [2] Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37-38 (1972). https://doi.org/10.1038/238037a0.
  • [3] Bard, A. J. Photoelectrochemistry, Science 207, 139-144 (1980), https://doi.org/10.1126/science.207.4427.139.
  • [4] Chen, X. B. Shen S. H., Guo L. J. & Mao S. S. Semiconductorbased Photocatalytic Hydrogen Generation. Chem. Rev. 110, 6503-6570 (2010). https://doi.org/10.1021/cr1001645.
  • [5] Lewis, N.S. Toward cost-effective solar energy use. Science 315, 798–801(2007), https://doi.org/10.1126/science.1137014.
  • [6] Lewis, N. S. & Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 103, 15729–15735 (2006). https://doi.org/10.1073/pnas.0603395103.
  • [7] Deb, S. K. Dye-sensitized TiO2 thin-film solar cell research at the national renewable energy laboratory (NREL). Sol. Energy Mater. Sol. Cells 88, 1–10 (2005). https://doi.org/10.1016/j.solmat.2004.09.007.
  • [8] Selinsky, R. S., Ding, Q., Faber, M. S., Wright, J. C. & Jin, S. Quantum dot nanoscale heterostructures for solar energy conversion, Chem. Soc. Rev. 42, 2963–2985 (2013). https://doi.org/10.1039/C2CS35374A .
  • [9] Fang, Z., Wang, X. C., Wu H. C. & Zhao C. Z. Achievements and challenges of CdS/CdTe solar cells. Int. J. Photoenergy 2011, 1-8 (2011). https://doi.org/10.1155/2011/297350 .
  • [10] Sharma, A. PV demand database quarterly. IMS Research 2011.
  • [11] Yan, B., Yue, G., Xu, X., Yang, J. & Guha, S. High efficiency amorphous and nanocrystalline silicon solar cells. Physica Status Solidi A 207, 671–677 (2010). https://doi.org/10.1002/pssa.200982886.
  • [12] Green, M. A. Thin film solar cells: review of materials, technologies and commercial status. J. Mater. Sci. Electron. 18, S15–S19 (2007). https://doi.org/10.1007/s10854-007-9177-9.
  • [13] Fthenakis, V. Sustainability of photovoltaics: The case for thinfilm solar cells. Renew. Sustain. Energy Rev. 13, 2746–2750 (2009). https://doi.org/10.1016/j.rser.2009.05.001.
  • [14] Kietzke, T. Recent Advances in Organic Solar Cells. Adv. in optoElectron. 2007, 40285 (2007). https://doi.org/10.1155/2007/40285.
  • [15] Ren, L. & Wang, S. Progress of organic photovoltaic materials. Recent Patents on Mater. Sci. 3, 26–39 (2010). https://doi.org/10.2174/1874464811003010026.
  • [16] Kimbis, T. P. Solar energy technology program. US Department of Energy (2011).
  • [17] Aurvtin, V., Izyumskaya, N. & Moroko, H. Semiconductor solar cells: Recent progress in terrestrial applications. Superlatt. Microstruct. 49, 337-364 (2011). https://doi.org/10.1016/j.spmi.2010.12.011.
  • [18] Fahrenbruch, A. L. & Bube, R. H. Fundamentals of Solar Cells. Academic Press, New York, USA (1983).
  • [19] Jeffery, L. G., Richard, J. S. & Youn, J. L. Numerical modeling of CuInSe2 and CdTe solar cells. ECE Technical Reports (1994).
  • [20] Zia, R., Farhat, S., Shahzad, N. & Madeeha R. Improve the efficiency of CdTe/ZnxCd1−xS all thin films solar cell by annealing. Optik 127, 4502–4505 (2016). https://doi.org/10.1016/j.ijleo.2016.01.154.
  • [21] Akbarnejad, E., Ghorannevis, Z., Mohammadi, E. & Fekriaval, L. Correlation between different CdTe nanostructures and the performances of solar cells based on CdTe/CdS heterojunction. J. Electroanalytical Chem. 849, 113358 (2019). https://doi.org/10.1016/j.jelechem.2019.113358.
  • [22] Khare, A. & Bhushan, S. Effect of KI/LiF/CdCl2 on photoluminescent and electroluminescent properties of nanocrystalline (Zn-Cd)S: Cu films. Radiat Eff. Defects Solids 161, 631–644 (2006). https://doi.org/10.1080/10420150600874923.
  • [23] Li, H. & Xiangxin, L. Improved performance of CdTe solar cells with CdS treatment. Sol. Energy 115, 603–612 (2015). https://doi.org/10.1016/j.solener.2015.02.044.
  • [24] Zhang, R., Wang, B., Wei, L., Li, X., Xu, Q., Peng, S., Kurash, I. & Qian, H. Growth and properties of ZnS thin films by sulfidation of sputter deposited Zn. Vacuum 86, 1210–1214 (2012). https://doi.org/10.1016/j.vacuum.2011.11.003.
  • [25] Azizi, S., Rezagholipour Dizaji H. & Ehsani M. H. Structural and optical properties of Cd1-xZnxS (x = 0, 0.4, 0.8 and 1) thin films prepared using the precursor obtained from microwave irradiation processes. Optik 127, 7104–7114 (2016). https://doi.org/10.1016/j.ijleo.2016.05.030.
  • [26] Lilhare, D., Sinha, T., & Khare, A. Influence of Cu doping on optical properties of (Cd–Zn)S nanocrystalline thin films: a review. J. Mater. Sci: Mater. Electron 29, 688–713 (2018). https://doi.org/10.1007/s10854-017-7963-6.
  • [27] Perna, G., Capozzi, V., Ambrico, M., Augelli, V., Ligonzo, T., Minafra, A., Schiavulli, L. & Pallara, M. Structural and optical characterization of undoped and indium-doped CdS films grown by pulsed laser deposition. Thin Solid Films 453-454, 187-194 (2004). https://doi.org/10.1016/j.tsf.2003.11.105.
  • [28] Opanasyuk, A. S., Kurbatov, D. I., Ivashchenko, M. M. & Protsenko, I. Y. Properties of the window layers for the CZTSe and CZTS based solar cells. J. Nano Electron. Phys. 4 01024-01026 (2012).
  • [29] Sasikala, G., Thilakan, P. & Subramanian, C. Modification in the chemical bath deposition apparatus, growth and characterization of CdS semiconducting thin films for photovoltaic applications. Sol. Energy Mater. Sol. Cells 62, 275-293 (2000) https://doi.org/10.1016/S0927-0248(99)00170-1.
  • [30] Sinha, T., Lilhare, D. & Khare, A. A review on the improvement in performance of CdTe/CdS thin-film solar cells through optimization of structural parameters. J. Mater. Sci. 54, 12189–12205 (2019). https://doi.org/10.1007/s10853-019-03651-0.
  • [31] Khosroabadi, S. & Keshmiri, S. H. Design of a high efficiency ultrathin cds/cdte solar cell using back surface field and backside distributed bragg reflector. Opt. express 22, A921-A929 (2014). https://doi.org/10.1364/OE.22.00A921.
  • [32] McCandless, B. E. & Dobson, K. D. Processing options for CdTe thin film solar cells. Sol. Energy 77, 839-856 (2004). https://doi.org/10.1016/j.solener.2004.04.012.
  • [33] Ferekides, S. C., Balasubramanian, U., Mamazza, R., Viswanathan, V., Zhao, H. & Morel, L. D. CdTe thin film solar cells: device and technology issues. Sol. Energy 77, 823–830 (2004). https://doi.org/10.1016/j.solener.2004.05.023.
  • [34] Moller, H. J. Semiconductor for Solar Cells. Artech House, Boston (1993).
  • [35] Ray, B. II-VI Compounds. Pergamon Press, Oxford (1969).
  • [36] Albright, S., Ackerman, B. & Jordan, J. IEEE Trans. Electron Devices ED-37, 434 (1990).
  • [37] Morris, G., Tanner, P. & Tottszer, A. Proc. 21st IEEE PVSC, 575 (1990).
  • [38] Turner, A., Woodcock, J., Ozsan, M., Summers, J., Barker, J., Binns, S., Buchanan, K., Chai, C., Dennison, S., Hart, R., Johnson, D., Marshall, R., Oktik, S., Patterson, M., Perks, R., Roberts, S., Sadeghi, M., Sherborne, J., Szubert, J. & Webster, S. Technical Digest of the International PVSEC-5. (Kyoto, Japan) 761 (1990).
  • [39] McCandless, B. E. & Hegedus, S. S. 22nd IEEE PV. Specialists Conference. Institute of Electrical and ElectronicsEngineers, New York, 967–972 (1991).
  • [40] McCandless, B. & Birkmire R. Analysis of post deposition processing for CdTe/CdS thin film solar cells. Sol. Cells 31, 527-535 (1991). https://doi.org/10.1016/0379-6787(91)90095-7.
  • [41] Nakamura, K., Gotoh, M., Fujihara, T., Toyama, T. & Okamoto, H. Influence of CdS window layer on 2-μm thick CdS/CdTe thin film solar cells. Sol. Energy Mater. Sol. Cells 75 185–192 (2003). https://doi.org/10.1016/S0927-0248(02)00154-X.
  • [42] Kephart, J. M., Geisthardt, R. M., Ma, Z., McCamy, J. & Sampath, W. S. Reduction of window layer optical losses in CdS/CdTe solar cells using a float-line manufacturable HRT layer. IEEE, 1653-1657 (2013). https://doi.org/10.1109/PVSC.2013.6744462.
  • [43] Wu, X., Asher, S., Levi, D. H., King, D. E., Yan, Y., Gessert, T. A. & Sheldon, P. Interdiffusion of CdS and Zn2SnO4 layers and its application in CdS/CdTe polycrystalline thin-film solar cells. J. Appl. Phys. 89, 4564–4569 (2001). https://doi.org/10.1063/1.1351539.
  • [44] Kartopu, G., Williams, B. L., Zardetto, V., Gurlek, A. K., Clayton, A. J., Jones, S., Kessels, W. M. M., Creatore, M. & Irvine, S. J. C. Enhancement of the photocurrent and efficiency of CdTe solar cells suppressing the front contact reflection using a highlyresistive ZnO buffer layer. Sol. Energy Mater. Sol. Cells, 191, 78–82 (2019). https://doi.org/10.1016/j.solmat.2018.11.002.
  • [45] Dharmadasa, I. M., Madugu, M. L., Olusola, O. I., Echendu, O. K., Dahiru, F. F., Diso, G., Weerasinghe, A. R., Druffel, T., Dharmadasa, R., Lavery, B., Jasinski, J. B., Krentsel, T. A. & Sumanasekera, G. Electroplating of CdTe thin films from cadmium sulphate precursor and comparison of layers grown by 3-electrode and 2-electrode systems. Coatings 7, 1-17 (2017). https://doi.org/10.3390/coatings7020017.
  • [46] Yang, R., Wang, D., Wan, L. & Wang, D. High-efficiency CdTe thin-film solar cell with a mono-grained CdS window layer. RSC Adv. 4, 22162-22171 (2014). https://doi.org/10.1039/C4RA01394H.
  • [47] Limmanee, A., Songtrai, S., Udomdachanut, N., Kaewniyompanit, S., Sato, Y., Nakaishi, M., Kittisontirak, S., Sriprapha, K. & Sakamoto, Y. Degradation analysis of photovoltaic modules under tropical climatic conditions and its impacts on LCOE. Renew. Energy 102, 199-204 (2017). https://doi.org/10.1016/j.renene.2016.10.052
  • [48] Sharma, V. & Chandel, S. S. A novel study for determining early life degradation of multi-crystalline-silicon photovoltaic modules observed in western himalayan indian climatic conditions. Sol. Energy 134, 32-44 (2016). https://doi.org/10.1016/j.solener.2016.04.023.
  • [49] Balaska, A., Tahri, A., Tahri, F. & Stambouli, A. B. Performance assessment of five different photovoltaic module technologies under outdoor conditions in algeria. Renew. Energy 107, 53-60 (2017). https://doi.org/10.1016/j.renene.2017.01.057.
  • [50] Silvestre, S., Kichou, S., Guglielminotti, L., Nofuentes, G. & Alonso-Abella, M. Degradation analysis of thin film photovoltaic modules under outdoor long term exposure in spanish continental climate conditions. Solar Energy 139 599-607 (2016). https://doi.org/10.1016/j.solener.2016.10.030.
  • [51] Limmanee, A., Udomdachanut, N., Songtrai, S., Kaewniyompanit, S., Sato, Y., Nakaishi, M., Kittisontirak, S., Sriprapha, K. & Sakamoto, Y. Field performance and degradation rates of different types of photovoltaic modules: a case study in Thailand. Renew. Energy 89, 12-17 (2016). https://doi.org/10.1016/j.renene.2015.11.088.
  • [52] Mendoza-Perez, R., Sastre-Hernandez, J., Contreras-Puente, G. & Vigil, G. O. CdTe solar cell degradation studies with the use of CdS as the window material. Sol. Energy Mater. Sol. Cells 93, 79–84 (2009). https://doi.org/10.1016/j.solmat.2008.09.016.
  • [53] Romeo, N., Bosio, A., Tedeschi, R. & Canevari, V. Back contacts to CSS CdS/CdTe solar cells and stability of performances. Thin Solid Films 361–362, 327–329 (2000). https://doi.org/10.1016/S0040-6090(99)00765-8.
  • [54] Singh, V. P., Erickson, O. M. & Chao, J. H. Analysis of contact degradation at the CdTe-electrode interface in thin-film CdTe-CdS solar-cells. J. Appl. Phys. 78, 4538–4542 (1995). https://doi.org/10.1063/1.359796.
  • [55] Ahn, B. T., Yun, J. H., Cha, E. S. & Park, K. C. Understanding the junction degradation mechanism in CdS/CdTe solar cells using a Cd-deficient CdTe layer. Curr. Appl. Phys. 12, 174-178 (2012). https://doi.org/10.1016/j.cap.2011.05.031.
  • [56] Visoly-Fisher, I., Dobson, K. D., Nair, J., Bezalel, E., Hodes, G. & Cahen, D. Factors affecting the stability of CdTe/CdS solar cells deduced from stress tests at elevated temperature. Adv. Funct. Mater. 13, 289-299 (2003). https://doi.org/10.1002/adfm.200304259.
  • [57] Lyubomirsky, I., Ranbinal, M. K. & Cahen, D. Room-temperature detection of mobile impurities in compound semiconductors by transient ion drift. J. Appl. Phys. 81, 6684-6691 (1997). https://doi.org/10.1063/1.365563.
  • [58] Romero, M. J., Albin, D. S., Al-Jassim, M. M., Wu, X., Moutinho, H. R. & Dhere, R. G. Cathodoluminescence of Cu diffusion in CdTe thin films for CdTe/CdS solar cells. Appl. Phys. Lett. 81, 2962-2964 (2002). https://doi.org/10.1063/1.1515119.
  • [59] Wu, X., Keane, J. C., Dhere, R. G., DeHart, C., Albin, D. S., Duda, A., Gessert, T. A., Asher, S., Levi, D. H. & Sheldon, P. 16.5% Efficient CdS/CdTe polycrystalline thin film solar cell. in: Proceedings of the 17th IEEE European PV Solar Energy Conference, Munich, Germany, 995–1000 (2001).
  • [60] Lin, H., Irfan, Xia, W., Wu, H. N., Gao, Y. & Tang, C. W. MoOx back contact for CdS/CdTe thin film solar cells: Preparation, device characteristics, and stability. Sol. Energy Mater. Sol. Cells 99, 349–355 (2012). https://doi.org/10.1016/j.solmat.2012.01.001.
  • [61] Kroger, M., Hamwi, S., Meyer, J., Riedl, T., Kowalsky, W., & Kahn, A. Role of the deep-lying electronic states of MoO3 in the enhancement of hole-injection in organic thin films. Appl. Phys. Lett. 95, 123301/1–123301/3 (2009). https://doi.org/10.1063/1.3231928.
  • [62] Zhang, M. L., Irfan, Ding, H. J., Gao, Y. L. & Tang, C. W. Organic Schottky barrier photovoltaic cells based on MoOx/C60. Appl. Phys. Lett. 96, 183301/1–183301/3 (2010). https://doi.org/10.1063/1.3415497.
  • [63] Wang, Q. Hot-wire CVD amorphous Si materials for solar cell application. Thin Solid Films 517, 3570–3574 (2009). https://doi.org/10.1016/j.tsf.2009.01.072.
  • [64] Bai, Y., Cao, Y., Zhang, J., Wang, M., Li, R., Wang, P., Zakeeruddin, S. M. & Gratzel, M. High-performance dyesensitized solar cells based on solvent-free electrolytes produced from eutectic melts. Nat. Mater. 7, 626–630 (2008). https://doi.org/10.1038/nmat2224.
  • [65] Wang, Q. High-efficiency hydrogeneated amorphous/crystalline Si heterojunction solar cells. Phil. Mag. 89, 2587–2598 (2009). https://doi.org/10.1080/14786430902919489.
  • [66] Gessert, T. A., Metzger, W. K., Dippo, P., Asher, S. E., Dhere, R. G. & Young, M. R. Dependence of carrier lifetime on Cucontacting temperature and ZnTe:Cu thickness in CdS/CdTe thin film solar cells. Thin Solid Films 517, 2370–2373 (2009). https://doi.org/10.1016/j.tsf.2008.11.008.
  • [67] Singh, V. P., Linam, D. L., Dils, D. W., McClure, J. C. & Lush, G. B. Electro-optical characterization and modeling of thin film CdS–CdTe heterojunction solar cells. Sol. Energy Mater. Sol. Cells 63, 445–466 (2000). https://doi.org/10.1016/S0927-0248(00)00063-5.
  • [68] Aliyu, M. M., Islam, M. A., Hamzah, N. R., Karim, M. R., Matin, M. A., Sopian, K. & Amin, N. Recent developments of flexible CdTe solar cells on metallic substrates: Issues and Prospects. Int. J. photoenergy 2012, 1-10, (2012). https://doi.org/10.1155/2012/351381.
  • [69] Singh, V. P. & McClure, J. Design issues in the fabrication of CdS–CdTe solar cells on molybdenum foil substrates. Sol. Energy Mater. Sol. Cells 76, 369–385 (2003). https://doi.org/10.1016%2FS0927-0248(02)00289-1.
  • [70] Metzger, W. K., Repins, I. L., Romero, M. & Dippo, P. Contreras, M., Noufi, R., Levi, D., Recombination kinetics and stability in polycrystalline Cu(In,Ga)Se2 solar cells, Thin Solid Films 517, 2360–2364 (2009). https://doi.org/10.1016/j.tsf.2008.11.050.
  • [71] Green, M. A., Emery, K., Hishikawa, Y. & Warta, W. Solar cell efficiency tables (version 35). Prog. Photovolt. Res. Appl. 18, 144–150 (2010). https://doi.org/10.1002/pip.974.
  • [72] Garnett, E. & Yang, P., Light Trapping in Silicon Nanowire Solar Cells, Nano Lett. 10, 1082–1087(2010). https://doi.org/10.1021/nl100161z.
  • [73] Liu, P., Singh, V. P., Rajaputra, S., Phok, S. & Chen Z. Characteristics of copper indium diselenide nanowires embedded in porous alumina templates. J. Mater. Res. 25, 207–212 (2010). https://doi.org/10.1557/JMR.2010.0030.
  • [74] Law, M., Greene, L. E., Johnson, J. C., Saykally, R. & Yang, P. D. Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455–459 (2005). https://doi.org/10.1038/nmat1387.
  • [75] Tian, B. Z., Zheng, X., Kempa, T. J., Fang, Y., Yu, N., Yu, G., Huang, J. & Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885–889 (2007). https://doi.org/10.1038/nature06181.
  • [76] Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F. & Yan, H. One‐dimensional nanostructures: synthesis, characterization, and applications. Adv. mater., 15, 353-389 (2003). https://doi.org/10.1002/adma.200390087.
  • [77] Khare, A., Sahub, R. B. & Sharma, S. K. Effect of NaF on optical and structural properties of CdxZn1−xS nano crystalline films. Optik 123, 1133– 1137 (2012). https://doi.org/10.1016/j.ijleo.2011.07.039.
  • [78] Morales, A. M. & Liber, C. M. A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208-211 (1998). https://doi.org/10.1126/science.279.5348.208.
  • [79] Pan, Z. W., Dai, Z. R. & Wang, Z. L. Nanobelts of semiconducting oxides. Science 291, 1947–1949 (2001). https://doi.org/10.1126/science.1058120.
  • [80] Huynh, W. U., Dittmer, J. J. & Alivisatos, A. P. Hybrid nanorodpolymer solar cells. Science 295, 2425–2427 (2002). https://doi.org/10.1126/science.1069156.
  • [81] Nag, B. R. Physics of Quantum Well devices. Kluwer, Dordrecht, The Nederlands (2000).
  • [82] Herman, M. A. & Sitter, H. Molecular Beam Epitaxy: Fundamental and current status,. Springer, Berlin (1996).
  • [83] Alivisatos, P. Colloidal quantum dots. From scaling laws to biological applications. Pure Appl. Chem. 72, 3-9 (2000). https://doi.org/10.1351/pac200072010003.
  • [84] Notzel, R. & Ploog K. Direct synthesis of semiconductor quantum‐wire and quantum‐dot structures. Adv. Mater. 5, 22-29 (1993). https://doi.org/10.1002/adma.19930050104.
  • [85] Xu, D., Chen, D., Xu, Y., Shi, X., Guo, G., Gui, L. & Tang, Y. Preparation of II-VI group semiconductor nanowire arrays by dc electrochemical deposition in porous aluminum oxide templates, Pure Appl. Chem. 72, 127-135 (2000). https://doi.org/10.1351/pac200072010127.
  • [86] Hiruma, K., Yazawa, M., Katsuyama, T., K., Okawa, Haraguchi, K., Kogucchi, M. & Kakibayashi, H. Growth and optical properties of nanometer‐scale GaAs and InAs whiskers. J. Appl. Phys. 77, 477-482 (1995). https://doi.org/10.1063/1.359026.
  • [87] Chen, J. Investigation of CdS nanowires and planar films for enhanced performance as window layers in CdS-CdTe solar cell devices. UKnowledge, June (2013) (Master's Thesis).
  • [88] Acharya, S., Patla, I., Kost, J., Efrima, S. & Golan, Y. Switchable assembly of ultra-narrow CdS nanowires and nanorods. J. Am. Chem. Soc. 128, 9294-9295 (2006). https://doi.org/10.1021/ja062404i.
  • [89] Kar, S., Pal, B. N., Chaudhuri, S. & Chakravorty D. Onedimensional ZnO nanostructure arrays: synthesis and characterization. J.Phys. Chem. B 110, 4605-4611 (2006). https://doi.org/10.1021/jp056673r.
  • [90] Rao, C. N. R., Deepak, F. L., Gundiah, G. & Govindaraj, A. Inorganic nanowires. Prog. Sol. State Chem. 31, 5-147 (2003). https://doi.org/10.1016/j.progsolidstchem.2003.08.001.
  • [91] Zeiri, L., Patla, I., Acharya, S., Golan, Y. & Efrima, S. Raman spectroscopy of ultranarrow CdS nanostructures. J. Phys. Chem. C 111, 11843-11848 (2007). https://doi.org/10.1021/jp072015q.
  • [92] Wong, E. W., Sheehan, P. E. & Lieber, C. M. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971-1975 (1997). https://doi.org/10.1126/science.277.5334.1971
  • [93] Colvin, V. L., Schlamp, M. C. & Alivisatos, A. P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354-357 (1994). https://doi.org/10.1038/370354a0.
  • [94] Klein, D. L., Roth, R., Lim, A. K. L., Alivisatos, A. P. & McEuen, P. L. A single-electron transistor made from a cadmium selenide nanocrystals. Nature 389, 699-701 (1997). https://doi.org/10.1038/39535.
  • [95] Ridley, B. A., Nivi, B. & Jacobson, J. M. All-inorganic field effect transistors fabricated by printing. Science 286, 746-749 (1999). https://doi.org/10.1126/science.286.5440.746.
  • [96] Alivisatos, A. P. Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science 271, 933-937 (1996). https://doi.org/10.1126/science.271.5251.933.
  • [97] Xu, D., Xu, Y., Chen, D., Guo, G., Gui, L. & Tang, Y. Preparation and characterization of CdS nanowire arrays by dc electrodeposit in porous anodic aluminium oxide templates. Chem. Phys. Lett. 325, 340-344 (2000). https://doi.org/10.1016/S0009-2614(00)00676-X.
  • [98] Guduru, S., Singh, V., Rajaputra, S., Mishra, S. & Mangu, R. Characteristics of gold/cadmium sulfide nanowire Schottky diodes. Thin Solid Films 518, 1809-1814 (2010). https://doi.org/10.1016/j.tsf.2009.09.038.
  • [99] Tian, B. Z., Zheng, X. L., Kempa, T. J., Fang, Y., Yu, N. F., Yu, G. H., Huang, J. L. & Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885–890 (2007). https://doi.org/10.1038/nature06181.
  • [100] Kelzenberg, M. D., Boettcher, S. W., Petykiewicz, J. A., TurnerEvans, D. B., Putnam, M. C., Warren, E. L., Spurgeon, J. M., Briggs, R. M., Lewis, N. S. & Atwater, H. A. Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nat. Mater. 9, 239–244 (2010). https://doi.org/10.1038/nmat2635
  • [101] Fan, Z., Razavi H., Do, J. W., Moriwaki, A., Ergen, O., Chueh, Y. L., Leu, P. W., Ho, J. C., Takahashi, T., Reichertz, L. A., Neale, S., Yu, K., Wu, M., Ager, J. W. & Javey, A. Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nat. Mater. 8, 648–653 (2009). https://doi.org/10.1038/nmat2493.
  • [102] Zhu, J., Hsu, C. M., Yu, Z. F. & Fan, S. H. Cui, Y. Nanodome Solar Cells with Efficient Light Management and Self-Cleaning. Nano Lett. 10, 1979–1984 (2010). https://doi.org/10.1021/nl9034237.
  • [103] Ni, L., Jacques, E., Rogela, R., Salaun, A. C., Pichon, L. & Wenga, G. VLS silicon nanowires based resistors for chemical sensor applications. Procedia Engineering 47, 240–243 (2012). https://doi.org/10.1016/j.proeng.2012.09.128.
  • [104] Dang, H., Singh, V., Rajaputra, S., Guduru, S., Chen, J. & Nadimpally, B. Cadmium sulfide nanowire arrays for window layer applications in solar cells, Sol. Energy Mater. Sol. Cells 126, 184–191 (2014). https://doi.org/https://doi.org/10.1016/j.solmat.2014.03.039
  • [105] Liu, P., Singh, V. P., Jarro, A. C. & Rajaputra, S. Cadmium sulfide nanowires for the window semiconductor layer in thin film CdSCdTe solar cells. Nanotechnology 22, 145304 (2011). https://doi.org/10.1088/0957-4484/22/14/145304.
  • [106] Fan, Z., Ruebusch, D. J., Rathore, A. A., Kapadia, R., Ergen, O., Leu, P. W. & Javey, A. Challenges and prospects of nanopillarbased solar cells. Nano Res. 2, 829–843 (2009). https://doi.org/10.1007/s12274-009-9091-y.
  • [107] Wu, X., Zhou, J., Duda, A., Keane, J. C., Gessert, T. A., Yan, Y. & Noufi, R. 13·9%‐efficient CdTe polycrystalline thin‐film solar cells with an infrared transmission of ∼50%, Prog. Photovolt., Res. Appl. 14, 471–483 (2006). https://doi.org/10.1002/pip.664.
  • [108] Zhu, Y., Li, Z., Chen, M., Cooper, H. M., Lu, G. Q. & Xu, Z. P. One-pot preparation of highly fluorescent cadmium telluride/cadmium sulfide quantum dots under neutral-pH condition for biological applications. J. Colloid Interf. Sci. 390, 3-10 (2013). https://doi.org/10.1016/j.jcis.2012.08.003.
  • [109] Garnett, E. & Yang, P. D. Light trapping in silicon nanowire solar cells. Nano Lett. 10, 1082–1087 (2010). https://doi.org/10.1021/nl100161z.
  • [110] Hu, L. & Chen, G. Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett. 7, 3249-3252 (2007). https://doi.org/10.1021/nl071018b
  • [111] Sahoo, M. K. & Kale, P. Integration of silicon nanowires in solar cell structure for efficiency enhancement: A review. J. Materiomics 5, 34-48 (2019). https://doi.org/10.1016/j.jmat.2018.11.007.
  • [112] Tang, J., Huo, Z., Brittman, S., Gao, H. & Yang P. Solutionprocessed core-shell nanowires for efficient photovoltaic cells. Nat. Nanotechnol. 6, 568–572 (2011). https://doi.org/10.1038/nnano.2011.139.
  • [113] Lilhare, D., Sinha T.,Verma, L. & Khare, A. Optimization of Zn concentration in chemically deposited (Cdx–Zn1−x)S nanocrystalline films for solar cell applications. Semicond. Sci. Tech. 34, 125010 (2019). https://doi.org/10.1088/1361-6641/ab4aea
  • [114] Sze, S. M. & Kwok, K. N. Physics of Semiconductor Devices. 3rd edn, New York: Wiley, (2007).
  • [115] Romeo, A., Batzner, D. L., Zogg, H., Vignali, C. &Tiwari A. N. Influence of CdS growth process on structural and photovoltaic properties of CdTe/CdS solar cells. Sol. Energy Mater. Sol. Cells 67, 311-321 (2001). https://doi.org/10.1016/S0927-0248(00)00297-X.
  • [116] Contreras, M. A., Romero, M. J., To, B., Hasoon, F., Hasoon, R. Noufi, Ward, S. & Ramanathan, K. Optimization of CBD CdS process in high-efficiency Cu(In,Ga)Se2 based solar cells. Thin Solid Films 403-404, 204-211 (2002). https://doi.org/10.1016/S0040-6090(01)01538-3
  • [117] Perez, R. M., Hernandez, J. A., Hernandez, J. S., Quiebras, N. X., Puente, G. C., Rodrıguez, G. S., Galan, O. V., Garcıa, E. M. & Acevedo, A. M. Photoluminescence characteristics of CdS layers deposited in a chemical bath and their correlation to CdS/CdTe solar cell performance. Sol. Energy 80, 682-686 (2006). https://doi.org/10.1016/j.solener.2006.01.002.
  • [118] Bayhan, H. & Kavasoglu, A. S. Study of CdS/Cu(In, Ga)Se 2 heterojunction interface using admittance and impedance spectroscopy. Sol. Energy 80, 1160-1164 (2006). https://doi.org/10.1016/j.solener.2005.09.004
  • [119] Borja, J. H., Vorobiev, Y. V. & Bon, R. R. Thin film solar cells of CdS/PbS chemically deposited by an ammonia-free process. Sol. Energy Mater. Sol. Cells 95, 1882–1888 (2011). https://doi.org/10.1016/j.solmat.2011.02.012.
  • [120] Hiie, J., Dedova, T., Valdna, V. & Muska, K. Comparative study of nano-structured CdS thin films prepared by CBD and spray pyrolysis: Annealing effect. Thin Solid Films 511, 443–447 (2006). https://doi.org/10.1016/j.tsf.2005.11.070.
  • [121] Kalandaragh, Y. A., Muradov, M. B., Mammedov, R. K. & Khodayari, A. Growth process and investigation of some physical properties of CdS nanocrystals formed in polymer matrix by successive ionic layer adsorption and reaction (SILAR) method. J. Cryst. Growth 305, 175–180 (2007). https://doi.org/10.1016/j.jcrysgro.2007.03.010
  • [122] Kaur, I., Pandya, D. K. & Chopra, K. L. Growth kinetics and polymorphism of chemically deposited CdS films. J. Electrochem. Soc. 127, 943–948 (1980). https://doi.org/10.1149/1.2129792.
  • [123] Borges, R. O. & Lincot D. Mechanism of chemical bath deposition of cadmium sulfide thin films in the ammonia‐thiourea system. J. Electrochem. Soc. 140, 3464–3473 (1993). https://doi.org/10.1149/1.2221111.
  • [124] Brien, P. O. & Saeed, T. Deposition and characterization of cadmium sulfide thin films by chemical bath deposition. J. Cryst. Growth 158, 497–504 (1996). https://doi.org/10.1016/0022-0248(95)00467-X.
  • [125] Mane, R. S. & Lokhande, C. D. Chemical deposition method for metal chalcogenide thin films. Mater.Chem.Phys. 65, 1-31 (2000). https://doi.org/10.1016/S0254-0584(00)00217-0.
  • [126] Chu, T. L., Chu, S. S., Ferekides, C., Wu, C. Q., Britt, J. & Wang, C. 13.4% efficient thin-film CdS/CdTe solar cells. J. Appl. Phys. 70, 7608-7612 (1991). https://doi.org/ 10.1063/1.349717.
  • [127] Hodes, G., Yaron, A. A., Decker, F. & Motisuke, P. Threedimensional quantum-size effect in chemically deposited cadmium selenide films. Phys. Rev. B 36, 4215-4221 (1987). https://doi.org/10.1103/physrevb.36.4215.
  • [128] Nemec, P., Nemec, I., Nahalkova, P., Nemcova, Y., Rojaneka, F. T. & Maly, P. Ammonia-free method for preparation of CdS nanocrystalline films by chemical bath deposition technique. Thin Solid Films 403–404, 9–12 (2002). https://doi.org/10.1016/S0040-6090(01)01530-9.
  • [129] Moncada, I. C., Gonzalez, L. A., Rodriguez-Galicia, J. L. & Rendon-Angeles, J. C. Chemical deposition of CdS films by an ammonia-free process with amino acids as complexing agents. Thin Solid Films 599, 166–173 (2016). https://doi.org/10.1016/j.tsf.2015.12.040.
  • [130] Lilhare, D., Pillai, S. & Khare, A. Effect of Tb Doping on structural and optical properties of (Cd0.8-Zn0.2)S films deposited through a chemical route. J. Electron. Mater. 47, 6532-6539 (2018). https://doi.org/10.1007/s11664-018-6554-5.
  • [131] Komaki, H., Yamada, A., Sakurai, K., Ishizuka, S., Kamikawa‐Shimizu, Y., Matsubara, K., Shibata, H. & Niki, S. CIGS solar cell with CdS buffer layer deposited by ammonia‐free process. Phys. Status Solidi A 206, 1072–1075 (2009). https://doi.org/10.1002/pssa.200881159.
  • [132] Hariskos, D., Powalla, M., Chevaldonnet, N., Lincot, D., Schindler, A. & Dimmler, B. Chemical bath deposition of CdS buffer layer: prospects of increasing materials yield and reducing waste. Thin Solid Films 387, 179–181 (2001). https://doi.org/10.1016/S0040-6090(00)01705-3.
  • [133] Malinowska, B., Rakib, M. & Durand, G. Cadmium recovery and recycling from chemical bath deposition of CdS thin layers. Prog. Photovolt. Res. Appl. 10, 215–228 (2002). https://doi.org/10.1002/pip.402.
  • [134] Ortuno-Lopez, M. B., Sotelo-Lerma, M., Mendoza-Galvan, A., & Ramirez-Bon, R. Chemically deposited CdS films in an ammoniafree cadmium-sodium citrate system. Thin Solid Films 457, 278–284 (2004). https://doi.org/10.1016/j.tsf.2003.11.169.
  • [135] Landin, R. O., Hernandez, J. S., Vigil, G. O. & Ramirez-Bon, R. Chemically deposited CdS by an ammonia-free process for solar cells window layers. Sol. Energy 84, 208–214 (2010). https://doi.org/10.1016/j.solener.2009.11.001.
  • [136] Khallaf, H., Oladeji, I. O., Chai, G. & Chow, L. Optimization of chemical bath deposited CdS thin films using nitrilotriacetic acid as a complexing agent. Thin Solid Films 516, 5967–5973 (2008). https://doi.org/10.1016/j.tsf.2007.10.079.
  • [137] Samadi-Maybodi, A., Abbasi, F. & Akhoondi, R. Aqueous synthesis and characterization of CdS quantum dots capped with some amino acids and investigations of their photocatalytic activities. Colloids Surf. A, 447, 111–119 (2014). https://doi.org/10.1016/j.colsurfa.2014.01.036.
  • [138] Talwatkar, S. S., Tamgadge, Y. S., Sunatkari, A. L., Gambhire, A. B. & Muley, G. G. Amino acids (l-arginine and l-alanine) passivated CdS nanoparticles: Synthesis of spherical hierarchical structure and nonlinear optical properties. Solid State Sci. 38, 42–48 (2014). https://doi.org/10.1016/j.solidstatesciences.2014.09.014.
  • [139] Mendivil-Reynoso, T., Berman-Mendoza, D., González, L. A., Castillo, S. J., Apolinar- Iribe, A., Gnade, B. Quevedo-López, M. A. & Ramirez-Bon, R. Fabrication and electrical characteristics of TFTs based on chemically deposited CdS films, using glycine as a complexing agent. Semicond. Sci. Technol. 26, 115010 (2011). https://doi.org/10.1088/0268-1242/26/11/115010.
  • [140] Ferra-Gonzalez, S. R., Berman-Mendoza, D., Garcia-Gutierrez, R., Castillo, S. J., Ramirez-Bon, R., Gnade, B. E. & Quevedo-López, M. A. Optical and structural properties of CdS thin films grown by chemical bath deposition doped with Ag by ion exchange. Optik 125 1533–1536 (2014). https://doi.org/10.1016/j.ijleo.2013.08.035.
  • [141] Carreon-Moncada, I., Gonzalez, L.A., Rodriguez-Galicia, J. L. & Rendon-Angeles, J. C. Chemical deposition of CdS films by an ammonia-free process with amino acids as complexing agents, Thin Solid Films 599, 166–173 (2016). https://doi.org/10.1016/j.tsf.2015.12.040.
  • [142] Ortuno-Lopez, M. B., Valenzuela-Jauregui, J. J., Sotelo-Lerma, M., Mendoza- Galvan, A. & Ramırez-Bon, R. Highly oriented CdS films deposited by an ammonia-free chemical bath method. Thin Solid Films 429, 34–39, (2003). https://doi.org/10.1016/S0040-6090(03)00144-5.
  • [143] Ortuno-Lopez, M. B., Sotelo-Lerma, M., Mendoza- Galvan, A. & Ramırez-Bon, R. Chemically deposited CdS films in an ammoniafree cadmium–sodium citrate system. Thin Solid Films 457, 278–284 (2004). https://doi.org/10.1016/j.tsf.2003.11.169.
  • [144] Sandoval-Paz, M. G., Sotelo-Lerma, M., Mendoza-Galvan, A. & Ramırez- Bon, R. Optical properties and layer microstructure of CdS films obtained from an ammonia-free chemical bath deposition process. Thin Solid Films 515, 3356–3362 (2007). https://doi.org/10.1016/j.tsf.2006.09.024.
  • [145] Sandoval-Paz, M. G., & Ramırez- Bon, R. Analysis of the early growth mechanisms during the chemical deposition of CdS thin films by spectroscopic ellipsometry. Thin Solid Films 517, 6747–6752 (2009). https://doi.org/10.1016/j.tsf.2009.05.045.
  • [146] Ortuno-Lopez, M. B., Sotelo-Lerma, M., Mendoza-Galvan, A. & Ramirez- Bon, R. Optical band gap tuning and study of strain in CdS thin films. Vacuum 76, 181–184 (2004). https://doi.org/10.1016/j.vacuum.2004.07.038.
  • [147] Hernandez-Borja, J., Vorobiev, Y. V. & Ramırez-Bon, R. Thin film solar cells of CdS/PbS chemically deposited by an ammoniafree process. Sol. Energy Mater. Sol. Cells 95, 1882–1888 (2011). https://doi.org/10.1016/j.solmat.2011.02.012.
  • [148] Esparza-Ponce, H. E., Hernandez-Borja, J., Reyes-Rojas, A., Cervantes-Sanchez, M., Vorobiev, Y. V., Ramırez-Bon, R., PerezRobles, J. F. & Gonzalez-Hernandez, J. Growth technology, X-ray and optical properties of CdSe thin films. Mater. Chem. Phys. 113, 824–828 (2009). https://doi.org/10.1016/j.matchemphys.2008.08.060.
  • [149] Salas-Villasenor, A. L., Mejıa, I., Hovarth, J., Alshareef, H. N., K.Cha, D., Ramırez Bon, R., Gnade, B. E. & Quevedo-Lopez, M. A. Impact of gate dielectric in carrier mobility in low temperature chalcogenide thin film transistors for flexible electronics. Electrochemical and Solid State Lett. 13, H313–H316 (2010). https://doi.org/10.1149/1.3456551.
  • [150] Arreola-Jardon, G., Gonzalez, L. A., Garcia-Cerda L. A., Gnade B., Quevedo- Lopez M. A. & Ramirez-Bon R. Ammonia-free chemically deposited CdS films as active layers in thin film transistors. Thin Solid Films 519, 517–520 (2010). https://doi.org/10.1016/j.tsf.2010.08.097.
  • [151] Watanabe, S. & Mita, Y. Electrical properties of CdS/PbS heterojunctions. Solid State Electron. 15, 5–10 (1972). https://doi.org/10.1016/0038-1101(72)90061-5.
  • [152] Elabd, H. & Steckl, A. J. Auger analysis of the PbS-Si heterojunction. J. Electron. Mater. 9, 525–549 (1980).
  • [153] Ellingson, R. J., Beard, M. C., Johnson, J. C., Yu, P., Micic, O. I., Nozik, A. J., Shabaev, A. & Efros, A. L. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 5, 865–871 (2005). https://doi.org/10.1021/nl0502672.
  • [154] Perna, G., Capozzi, V., Ambrico, M., Augelli, V., Ligonzo T., Minafra A., Schiavulli L. & Pallara M. Structural and optical characterization of undoped and indium-doped CdS films grown by pulsed laser deposition. Thin Solid Films 453–454, 187-194 (2004). https://doi.org/10.1016/j.tsf.2003.11.105.
  • [155] Opanasyuk, A. S., Kurbatov, D. I., Ivashchenko, M. M. & Protsenko, I. Y. Properties of the window layers for the CZTSe and CZTS based solar cells. J. Nano Electron. Phys. 4, 01024-1-01024-3 (2012).
  • [156] Han, J., Liao, C., Jiang, T., Spanheimer, C., Haind, G., Fu, G., Krishnakumar, V., Zhao, K., Klein, A. & Jaegermann, W. An optimized multilayer structure of CdS layer for CdTe solar cells application,. J. Alloys Compd. 509, 5285-5289 (2011). https://doi.org/10.1016/j.jallcom.2010.12.085.
  • [157] Xu X., Wang, X., Gu, W., Quan, S. & Zhang, Z. Study on influences of CdZnS buffer layer on CdTe solar cells. Superlattices Microstruct. 109, 463-469 (2017). https://doi.org/10.1016/j.spmi.2017.05.033.
  • [158] Pudov, A., Sites, J. & Nakada, T. Performance and loss analyses of high-efficiency chemical bath deposition (CBD) ZnS/Cu(In1-xGax)Se2 thin-film solar cells. Jpn. J. Appl. Phys. 41, L672-L674 (2002). https://doi.org/10.1143/JJAP.41.L672.
  • [159] Yang, L. C., Xiao, H. Z., Rockett, A., Shafarman, W. N. & Birkmire, R. W. The growth by the hybrid sputtering and evaporation method and microstructural studies of CuInSe2 films. Sol Energy Mater Sol Cells 36, 445-455 (1995). https://doi.org/10.1016/0927-0248(94)00192-8.
  • [160] Mohamed, H. A. Dependence of efficiency of thin-film CdS/CdTe solar cell on optical and recombination losses. J. Appl. Phys. 113, 093105 (2013). https://doi.org/10.1063/1.4794201.
  • [161] Kumar, S. G. & Koteshwara Rao, K. S. R. Physics and chemistry of CdTe/CdS thin film heterojunction photovoltaic devices: fundamental and critical aspects. Energy Environ. Sci. 7, 45-102 (2014). https://doi.org/10.1039/C3EE41981A.
  • [162] Da Cunha, A. F., Kurdesau, F. & Salome, P. M. P. Performance comparison of hybrid sputtering/evaporation CuIn1−xGaxSe2 solar cells with different transparent conducting oxide window layers. J. Non-Cryst. Solids 352, 1976-1980 (2006). https://doi.org/10.1016/j.jnoncrysol.2005.12.028.
  • [163] Fujiwara, H. Spectroscopic Ellipsometry Principles and Applications. John Wiley & Sons Ltd. UK (2007).
  • [164] Hossain, M. S., Rahman, K. S., Karim, M. R., Aijaz, M. O., Dar, M. A., Shar, M. A., Misran, H., Amin, N., Impact of CdTe thin film thickness in ZnxCd1−xS/CdTe solar cell by RF sputtering, Sol. Energy 180, 559-566 (2019). https://doi.org/10.1016/j.solener.2019.01.019.
  • [165] Kasim, U., Narayanan, H., Anthony, O., Optimization of Process Parameters of Chemical Bath Deposition of Cd1-XZnxS Thin Film, Leonardo J. Sci. 12, 111-120 (2008).
  • [166] Kartopu, G., Clayton, A. J., Brooks, W. S. M., Hodgson, S. D., Barrioz, V., Maertens, A., Lamb, D. A., Irvine, S. J. C., Prog. Photovolt: Res. Appl. (2012). https://doi.org/10.1002/pip.2272.
  • [167] Brooks, W. S. M., Irvine, S. J. C., Barrioz, V., Clayton, A. J., Laser beam induced current measurements of Cd1−xZnxS/CdTe solar cells, Sol. Energy Mater. Sol. Cells 101, 26–31 (2012). https://doi.org/10.1016/j.solmat.2012.02.006.
  • [168] Castillo, R. H., Acosta, M., Riech, I., Rodriguez, G. S., Gamboa, J. M., Acosta C., Zambrano, M., Study of ZnS/CdS structures for solar cells applications, Optik 148, 95–100 (2017). https://doi.org/10.1016/j.ijleo.2017.09.002.
  • [169] Osman, M. A. & Abd-Elrahim, A. G. Excitation wavelength dependent photoluminescence emission behavior, UV induced photoluminescence enhancement and optical gap tuning of Zn0.45Cd0.55S nanoparticles for optoelectronic applications. Optical Mater. 77, 1–12 (2018). https://doi.org/10.1016/j.optmat.2018.01.011.
  • [170] Osman, M. A., Abd-Elrahim, A. G. & Othman, A. A. Sizedependent structural phase transitions and their correlation with photoluminescence and optical absorption behavior of annealed Zn0.45Cd0.55S quantum dots. Mater. Character. 144, 247–263 (2018). https://doi.org/10.1016/j.matchar.2018.07.020.
  • [171] Prem Kumar, T. & Sankaranarayanan K. Tunability of structural, surface texture, compositional and optical properties of CdZnS thin films by photo assisted-chemical bath deposition technique. Chalcogenide Lett. 6, 617–622 (2009).
  • [172] Werta, S. Z., Echendu, O. K., Egbo, K. O. & Dejene F. B. Electrochemical deposition and characterization of thin-flm Cd1-xZnxS for solar cell application: The effect of cathodic deposition voltage. Thin Solid Films 689, 137511 (2019). https://doi.org/10.1016/j.tsf.2019.137511.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-219b2ecd-c516-415d-b6db-9c6989ff287f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.