Identyfikatory
Warianty tytułu
Wykorzystanie nieliniowej interpolacji oraz filtru cząsteczkowego w pozycjonowaniu wewnątrz pomieszczeń przy użyciu technologii Zigbee
Języki publikacji
Abstrakty
The key to fingerprint positioning algorithm is establishing effective fingerprint information database based on different reference nodes of received signal strength indicator (RSSI). Traditional method is to set the location area calibration multiple information sampling points, and collection of a large number sample data what is very time consuming. With Zigbee sensor networks as platform, considering the influence of positioning signal interference, we proposed an improved algorithm of getting virtual database based on polynomial interpolation, while the pre-estimated result was disposed by particle filter. Experimental result shows that this method can generate a quick, simple fine-grained localization information database, and improve the positioning accuracy at the same time.
Kluczem do algorytmu pozycjonowania wykorzystującego metodę fingerprinting jest ustanowienie skutecznej bazy danych na podstawie informacji z radiowych nadajników referencyjnych przy wykorzystaniu wskaźnika mocy odbieranego sygnału (RSSI). Tradycyjna metoda oparta jest na przeprowadzeniu kalibracji obszaru lokalizacji na podstawie wielu punktów pomiarowych i otrzymaniu dużej liczby próbek, co jest bardzo czasochłonne.
Wydawca
Czasopismo
Rocznik
Tom
Strony
219--233
Opis fizyczny
Bibliogr. 9 poz., rys., tab., wykr.
Twórcy
autor
- Nanchang University, Academy of Space Technology, 202 West Beijing Rd., Nanchang 330046, China
autor
- Nanchang University, Academy of Space Technology, 202 West Beijing Rd., Nanchang 330046, China
autor
- Nanchang University, Academy of Space Technology, 202 West Beijing Rd., Nanchang 330046, China
autor
- University of Warmia and Mazury in Olsztyn Department of Astronomy and Geodynamice Oczapowskiego 1, 10-719 Olsztyn, Poland
Bibliografia
- [1] Chen, Jiaqi &Yan Zi (2012). Application of Improved Algorithm of RFID based on a Newton interpolation in indoor positioning. Computer system and application, 2012, 21(1): 45-28.
- [2] Crisan, Dan & Del Moral P. (1999). Non-liner fi ltering using branching and interacting particle system.Markov Processes Related Fields, 1999, 5:293-319.
- [3] Guo H., Chen Q., Yu M. & Siddharth S. (2011). Weighted Centroid Localzation Algorithm Based on ZigBee for Indoor Positioning. International Technical Meeting of The Institute of Navigation, San Diego, CA, January 24-26, 2011, Pages: 619-627.
- [4] Liu Xiaokang, Chen Qun &Guo Hang (2012). Zigbee wireless sensor network RSSI fi ngerprint database location method. Satellite navigation and positioning of Beidou system application. Conference proceedings 2012,: 274-278.
- [5] Neal Patwari, Alfred O. Hero & Jose A. Costa (2007). Learning Sensor Location from Signal Strength and Connectivity. Advances in Information Security. 2007, Volume 30, Part I, 57-81.
- [6] Shau-Shiun Jan, Li-Ta Hsu & Wen-MingTsai (2010). Development of an Indoor Location Based Service Test Bed and Geographic Information System with a Wireless Sensor Network. Sensors, 2010, 10:2 957-2 974.
- [7] Si Haifei, Yang Zhong & Wang Jun (2011). Research and Application of Wireless Sensor Network.Mechanical & Electrical Engineering, 2011, 28 (1): 16-20.
- [8] Tang Wen-Sheng, Li Shan & Kuang Wangqiu Qiu (2008). New Algorithm Based on Spatial Correlation for Yielding Fingerprints Database of Indoor Localization. Computer Engineering And Application, 2008, 44 (23):226-229.
- [9] Yin, J., Yang Q. & Ni L. (2005). Adaptive Temporal Radio MapsFor Indoor Location Estimation [C].Proc. of the 3rd IEEE International Conference on Pervasive Computing and Communications.Piscataway, NJ: IEEE, 2005: 85-94.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2196e6c9-3e7f-40c9-9e13-0b358d31f468