Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In the recent paper, non-linear methods of data analysis were used to study bubble departure synchronisation. In the experiment, bubbles were generated in engine oils from two neighbouring brass nozzles (with an inner diameter of 1 mm). During the experiment, the time series of air pressure oscillations in the air supply system and voltage changes on phototransistor were recorded. The analysis of bubble departure synchronisation was performed using a correlation coefficient. The following methods of non-linear data analysis are considered. Fast Fourier Transformation, autocorrelation, attractor reconstruction, correlation dimension, largest Lyapunov exponent and recurrence plot analysis were used to examine the correlation between bubbles behaviour and character of pressure fluctuations. Non-linear analysis of bubble departure synchronisation revealed that the way of bubble departures from two neighbouring nozzles does not depend simply on the character of pressure fluctuations in the nozzle air supply systems. The chaotic changes of the air pressure oscillations do not always determine the chaotic bubble departures.
Czasopismo
Rocznik
Tom
Strony
158--165
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Białystok, Poland
autor
- *Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Białystok, Poland
autor
- *Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Białystok, Poland
autor
- *Faculty of Mechanical Engineering, Bialystok University of Technology, Wiejska 45C, 15-351 Białystok, Poland p.dzienis@pb.edu.pl, r.mosdorf@pb.edu.pl, wyszkowski.tomasz@gmail.com, girejkogabriela@gmail.com
Bibliografia
- 1. Dzienis P., Mosdorf R. (2014), Stability of periodic bubble departures at a low frequency, Chemical Engineering Science,109, 171-182.
- 2. Femat R., Ramirez J.A., Soria A. (1998), Chaotic flow structure in a vertical bubble column, Physics Letters A,248 (1), 67–79.
- 3. Grassberger P., and Procaccia I. (1983), Measuring the strangeness of strange attractors, Physica - D,9, 189–208.
- 4. Kazakis N.A., Mouza A.A., Paras S.V. (2008), Coalescence during bubble formation at two neighbouring pores: an experimental study in microscopic scale, Chemical Engineering Science,63, 5160–5178
- 5. Lavensona D.M., Kelkara A.V., Daniel A. B., Mohammad S.A., Koubab G., Aicheleb C.P. (2016), Gas evolution rates – A critical uncertainty in challenged gas-liquid separations, Journal of Petroleum Science and Engineering, 147, 816-828
- 6. Legendre D., Magnaudet J., Mougin G. (2003), Hydrodynamic interactions between two spherical bubbles rising side by side in a viscous liquid,Journal of Fluid Mechanics,497, 133–166.
- 7. Marwan N.(2019), Cross Recurrence Plot Toolbox for Matlab, Ver. 5.15, Release 28.10, http://tocsy.pik-potsdam.de.
- 8. Marwan N., Romano M. C., Thiel M., Kurths J. (2007),Recurrence Plots for the Analysis of Complex Systems,Physics Reports, 438, 237 – 329.
- 9. Mosdorf R., Dzienis P., Litak G. (2017), The loss of synchronization between air pressure fluctuations and liquid flow inside the nozzle during the chaotic bubble departures, Meccanica, 52, 2641–2654
- 10. Mosdorf R., Wyszkowski T. (2011), Experimental investigations of deterministic chaos appearance in bubbling flow, International Journal of Heat and Mass Transfer, 54, 5060–5069.
- 11. Mosdorf R., Wyszkowski T. (2013), Self-organising structure of bubbles departures, International Journal of Heat and Mass Transfer, 61, 277–286.
- 12. Sanada T., Sato A., Shirota M.T., Watanabe M. (2009), Motion and coalescence of a pair of bubbles rising side by side, Chemical Engineering Science, 64, 2659-2671.
- 13. Schuster H.G. (1993), Deterministic Chaos. An Introduction, PWN, Warszawa (in Polish).
- 14. Snabre P., Magnifotcham F. (1997), Formation and rise of a bubble stream in viscous liquid,European Physical Journal B, 4, 369-377.
- 15. Torrence C., Compo G. P. (1998), A practical guide to wavelet analysis, Bulletin of the American Meteorological Society,79, 61-78.
- 16. Vazquez A., Leifer I., Sanchez R.M. (2010), Consideration of the dynamic forces during bubble growth in a capillary tube, Chemical Engineering Science, 65, 4046–4054.
- 17. Wolf A., Swift J.B., Swinney H.L., Vastano J.A. (1985), Determining Lyapunov Exponent from a Time series, Physica-D, 16, 285–317.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-21962856-b2a8-4e2a-8641-cedafc0b4c93