PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Computational Characterization of Two Di-1,2,3,4-tetrazine Tetraoxides, DTTO and iso-DTTO, as Potential Energetic Compounds

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Abstract: The isomeric di-1,2,3,4-tetrazine tetraoxides DTTO and iso-DTTO have aroused considerable interest in recent years as potential energetic compounds, due to their predicted high densities and heats of formation and superior detonation properties. While neither has yet been synthesized, it has been suggested that the N→O linkages on alternate nitrogens will have a stabilizing effect. In the present study, we have reassessed the expected properties of DTTO and iso-DTTO. We fnd their anticipated detonation velocities and detonation pressures to be improved over HMX and similar to CL-20. The molecular surface electrostatic potentials of DTTO and iso-DTTO are consistent with the proposed stabilizing infuence of the N→O bonds. Furthermore, estimates of the available free space in the crystal lattices indicate that DTTO and iso-DTTO may be signifcantly less sensitive to impact than either HMX or CL-20.
Słowa kluczowe
Rocznik
Strony
37--52
Opis fizyczny
Bibliogr. 49 poz., rys., tab., wyk.
Twórcy
autor
  • CleveTheoComp, 1951 W. 26th Street, Suite 409, Cleveland, OH 44113
autor
  • Department of Chemistry, University of New Orleans, New Orleans, LA 70148
autor
  • Department of Chemistry, University of New Orleans, New Orleans, LA 70148
Bibliografia
  • [1] Rezchikova K.I., Churakov A.M., Shlyapochnikov V.A., Tartakovsky V.A.,A Quantum-Chemical Study of 1,2,3,4,5,6,7,8-Octaazanaphthalene and Its N-Oxides, Russ. Chem. Bull., 1999, 48, 870-872.
  • [2] Churakov A.M., Tartakovsky V.A., Progress in 1,2,3,4-Tetrazine Chemistry, Chem. Rev. 2004, 104, 2601-2616.
  • [3] Östmark H., High Energy Density Materials (HEDM): Overview, Theory and Synthetic Efforts at FOI, New Trends Res. Energ. Mater., Proc. Semin., 9th, Part I, University of Pardubice, Czech Republic, 2006, 231-250.
  • [4] Song X., Li J., Hou H., Wang B., Extensive Theoretical Studies of a New Energetic Material: Tetrazino-Tetrazine-Tetraoxide (TTTO), J. Comput. Chem., 2009, 30, 1816-1820.
  • [5] Christe K.O., Haiges R., Wagner R.I., Jones C.J., Synthesis of New High-Oxygen Carriers and Ditetrazinetetraoxide (DTTO), Final Report, Contract N00014-08-1-0590, Offce of Naval Research, Arlington, VA 2009.
  • [6] Jorgensen K.R., Oyedepo G.A., Wilson A.K., Highly Energetic Nitrogen Species: Reliable Energetics via the Correlation Consistent Composite Approach (ccCA), J. Hazard. Mater., 2011, 186, 583-589.
  • [7] Mader C.L., Numerical Modeling of Explosives and Propellants, 2nd ed., CRC Press, Boca Raton, FL, 1998.
  • [8] Sikder A.K., Maddala G., Agrawal J.P., Singh H., Important Aspects of Behavior of Organic Energetic Compounds: A Review, J. Hazard. Mater., 2001, A84, 1-26.
  • [9] Byrd E.F.C., Rice B.M., Improved Prediction of Heats of Formation of Energetic Materials Using Quantum Chemical Calculations, J. Phys. Chem. A, 2006, 110, 1005-1013; erratum: 2009, 113, 5813.
  • [10] Wilson K.J., Perera S.A., Bartlett R.J., Watts J.D., Stabilization of the Pseudo-Benzene N6 Ring with Oxygen, J. Phys. Chem. A, 2001, 105, 7693-7699.
  • [11] Rice B.M., Hare J.J., Byrd E.F.C., Accurate Predictions of Crystal Densities Using Quantum Mechanical Molecular Volumes, J. Phys. Chem. A, 2007, 111, 10874-10879.
  • [12] Iyer S., Slagg N., Molecular Aspects in Energetic Materials, in: Structure and Reactivity, (Liebman J.F., Greenberg A., Eds.), VCH Publishers, New York, 1988, ch. 7.
  • [13] Dlott D.D., Fast Molecular Processes in Energetic Materials, in: Energetic Materials. Part 2. Detonation, Combustion, (Politzer P., Murray J.S., Eds.), Elsevier, Amsterdam, 2003, Ch. 6, 125-191.
  • [14] Meyer R., Köhler J., Homburg A. Explosives, 6th ed., Wiley-VCH, Weinheim, Germany, 2007.
  • [15] Politzer P., Murray J.S., Sensitivity Correlations, in: Energetic Materials. Part 2. Detonation, Combustion, (Politzer P., Murray J.S., Eds.), Elsevier, Amsterdam, 2003, Ch. 1.
  • [16] Zeman S., Sensitivities of High Energy Compounds, Struct. Bond., 2007, 125, 195-271.
  • [17] Shackelford S.A., Role of Thermochemical Decomposition in Energetic Material Initiation Sensitivity and Explosive Performance, Cent. Eur. J. Energ. Mater., 2008, 5(1), 75-101.
  • [18] Kamlet M.J., Jacobs S.J., Chemistry of Detonation. I. A Simple Method for Calculating Detonation Properties of C,H,N,O Explosives, J. Chem. Phys., 1968, 48, 23-35.
  • [19] Levine H.B., Sharples R.E., Operator’s Manual for RUBY, Lawrence Livermore Laboratory Report UCRL-6815, Livermore, CA, 1962.
  • [20] Cowperthwaite M., Zwister M.W.H., TIGER Computer Program Documentation, Stanford Research Institute, SRI Publication No. 2106, 1973.
  • [21] Suceska M., Calculation of Detonation Properties by EXPLO5 Computer Program, Materials Science Forum, 2004, 465/466, 325-330.
  • [22] Bastea S., Fried L.E., Glaesemann K.R., Howard W.M., Sovers P.C., Vitello P.A., CHEETAH 5.0, User’s Manual, Lawrence Livermore National Laboratory, Livermore, CA, 2006.
  • [23] Shekhar H., Studies on Empirical Approaches for Estimation of Detonation Velocity of High Explosives, Cent. Eur. J. Energ. Mater., 2012, 9, 39-48.
  • [24] Politzer P., Murray J.S., Some Perspectives on Estimating Detonation Properties of C,H,N,O Compounds, Cent. Eur. J. Energ. Mater., 2011, 8, 209-220.
  • [25] Habibollahzadeh, D., Grice, M.E., Concha, M.C., Murray, J.S., Politzer, P., Nonlocal Density Functional Calculation of Gas Phase Heats of Formation, J. Comput. Chem., 1995, 16, 654-658.
  • [26] Rice B.M., Pai S.V., Hare J., Predicting Heats of Formation of Energetic Materials Using Quantum Chemical Calculations, Combust. Flame, 1999, 118, 445-458.
  • [27] Politzer P., Murray J.S., Grice M.E., DeSalvo M., Miller E., Calculation of Heats of Sublimation and Solid Phase Heats of Formation, Mol. Phys., 1997, 91, 923-928.
  • [28] Stewart R.F., On the Mapping of Electrostatic Potentials from Bragg Diffraction Data, Chem. Phys. Lett., 1979, 65, 335-342.
  • [29] Politzer P., Truhlar D.G., Eds., Chemical Applications of Atomic and Molecular Electrostatic Potentials, Plenum Press, New York, 1981.
  • [30] Bader R.F.W., Carroll M.T., Cheeseman J.R., Chang C., Properties of Atoms in Molecules: Atomic Volumes, J. Am. Chem. Soc., 1987, 109, 7968-7979.
  • [31] Politzer P., Murray J.S., Statistical Analysis of the Molecular Surface Electrostatic Potential: An Approach to Describing Noncovalent Interactions in Condensed Phases, J. Mol. Struct. (Theochem), 1998, 425, 107-114.
  • [32] Lias S.G., Bartmess, J. E., Liebman, J. L., Levin, R. D., Mallard, W. G., Gas-Phase Ion and Neutral Thermochemistry, J. Phys. Chem. Ref. Data, 1988, 17, Suppl. No. 1.
  • [33] Qiu L., Xiao H., Gong X., Ju X., Zhu W., Crystal Density Predictions for Nitramines Based on Quantum Chemistry, J. Hazard. Mater., 2007, 141, 280-288.
  • [34] Rice B.M., Hare J.J., Byrd E.F.C., Accurate Predictions of Crystal Densities Using Quantum Chemical Molecular Volumes, J. Phys. Chem. A, 2007, 111, 10874-10879.
  • [35] Politzer P., Martinez J., Murray J.S., Concha M.C., Toro-Labbé A., An Electrostatic Interaction Correction for Improved Crystal Density Predictions, Mol. Phys., 2009, 107, 2095-2101.
  • [36] Eckhardt C.J., Gavezzotti A., Computer Simulations and Analysis of Structural and Energetic Features of Some Crystalline Energetic Materials, J. Phys. Chem. B, 2007, 111, 3430-3437.
  • [37] Brill T.B., James K., Kinetics and Mechanism of Thermal Decomposition of Nitroaromatic Explosives, Chem. Rev., 1993, 93, 2667-2692.
  • [38] Murray J.S., Concha M.C., Politzer P., Links Between Surface Electrostatic Potentials of Energetic Molecules, Impact Sensitivities and C-NO2/N-NO2 Bond Dissociation Energies, Mol. Phys., 2009, 107, 89-97.
  • [39] Pospíšil M., Vávra P., Concha M.C., Murray J.S., Politzer P., Sensitivity and the Available Free Space per Molecule in the Unit Cell, J. Mol. Model., 2011, 17, 2569-2574.
  • [40] Zhang C., Stress-Induced Activation of Decomposition of Organic Explosives: A Simple Way to Understand, J. Mol. Model., 2012, DOI: 10.1007/s00894-012-1575-0.
  • [41] Rice B.M., Hare J.J., A Quantum Mechanical Investigation of the Relation Between Impact Sensitivity and the Charge Distribution in Energetic Molecules, J. Phys. Chem. A, 2002, 106, 1770-1783.
  • [42] Zeman S., Krupka M., New Aspects of Impact Reactivity of Polynitro Compounds, Part III. Impact Sensitivity as a Function of the Intermolecular Interactions, Propellants Explos. Pyrotech., 2003, 28, 301-307.
  • [43] Chen H., Li L., Jin S., Chen S., Jiao Q., Effects of Additives on ε-HNIW Crystal Morphology and Impact Sensitivity, Propellants Explos. Pyrotech., 2012, 37, 77-82.
  • [44] Murray J.S., Politzer P., The Electrostatic Potential: An Overview, Comp. Mol. Sci., 2011, 1, 153-163.
  • [45] Bulat F.A., Toro-Labbé A., Brinck T., Murray J.S., Politzer P., Quantitative Analysis of Molecular Surfaces: Areas, Volumes, Electrostatic Potentials and Average Local Ionization Energies, J. Mol. Model., 2010, 16, 1679-1691.
  • [46] Murray J.S., Lane P., Politzer P., Effects of Strongly Electron-Attracting Components on Molecular Surface Electrostatic Potentials: Applications to Predicting Impact Sensitivities of Energetic Molecules, Mol. Phys., 1998, 93, 187-194.
  • [47] Auffnger P., Hays F.A., Westhof, E., Shing Ho, P., Halogen bonding in biological molecules, Proc. Nat. Acad. Sci., 2004, 101, 16789-16794.
  • [48] Politzer P., Murray J.S., Concha M.C., σ-Hole Bonding Between Like Atoms; A Fallacy of Atomic Charges, J. Mol. Model., 2008, 14, 659-665.
  • [49] Politzer P., Lane P., Murray J.S., Computational Characterization of a Potential Energetic Compound: 1,3,5,7-Tetranitro-2,4,6,8-Tetraazacubane, Cent. Eur. J. Energ. Mater., 2011, 8, 39-52.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-21950077-3e4a-488d-8684-e1f5ef6b02fd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.