PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Laser alloying of 316L steel with boron and Stellite-6

Identyfikatory
Warianty tytułu
PL
Laserowe stopowanie stali 316L borem i Stellite-6
Języki publikacji
EN
Abstrakty
EN
Austenitic 316L steel belongs to one of the most numerous groups of alloys with special properties. It is well-known for its most effective balance of carbon, chromium, nickel and molybdenum concentrations for corrosion resistance. However, under conditions of appreciable mechanical wear (adhesive or abrasive), this steel should be characterized by suitable wear protection. Diffusion boronizing and laser alloying with boron were often used in order to improve tribological properties of 316L steel. In this study, the method of laser alloying was modified in this way that alloying material contained the mixture of amorphous boron and Stellite-6 powders. The coated surface was remelted by the laser beam using TRUMPF TLF 2600 Turbo CO2 laser. After the laser alloying process, the composite surface layer was produced. Only two zones occurred in the laser-alloyed 316L steel: remelted zone and the substrate (base material). Heat-affected zone was invisible because the austenitic steel could not be hardened by typical heat treatment. The remelted zone consisted of hard ceramic phases (iron, chromium and nickel borides) in the soft austenitic matrix with the increased concentration of cobalt. Some properties of this layer were investigated and compared to the laser-alloyed layer with boron only. The produced layer was characterized by a compact microstructure which was free of cracks and gas pores. The layer was also uniform in respect of the thickness because of the high overlapping used during the laser treatment (86%). The obtained thickness was significantly higher than that obtained in case of diffusion boriding. In spite of the lower hardness of remelted zone, the increase in wear resistance of the proposed surface layer was observed in comparison with laser-alloyed 316L austenitic steel with boron only.
PL
Stal 316L jest powszechnie stosowanym materiałem odpornym na korozję i żaroodpornym. Te korzystne właściwości zawdzięcza jednofazowej, austenitycznej mikrostrukturze i odpowiedniej zawartości węgla, chromu, niklu i molibdenu. To sprawia, że materiał ten jest stosowany często tam, gdzie jest spodziewane agresywne środowisko lub wysoka temperatura. Celem pracy było przeprowadzenie stopowania laserowego stali 316L z zastosowaniem materiału stopującego w postaci mieszaniny amorficznego boru i proszku Stellite-6. Bor amorficzny miał prowadzić do wytworzenia w strefie przetopionej twardych borków żelaza, chromu i niklu, podstawowych pierwiastków występujących w stali 316L. Dodatek kobaltu, głównego składnika proszku Stellite-6, miał powodować ograniczenie udziału borków w mikrostrukturze i sprzyjać jego odporności korozyjnej. Spodziewano się znacznego zwiększenia twardości oraz odporności na zużycie przez tarcie wytworzonej warstwy powierzchniowej w porównaniu ze stalą 316L nie poddaną żadnej obróbce.
Rocznik
Strony
259--265
Opis fizyczny
Bibliogr. 30 poz., fig., tab.
Twórcy
  • Instytut Inżynierii Materiałowej, Politechnika Poznańska
autor
  • Instytut Inżynierii Materiałowej, Politechnika Poznańska
autor
  • Instytut Inżynierii Materiałowej, Politechnika Poznańska
autor
  • Instytut Inżynierii Materiałowej, Politechnika Poznańska
Bibliografia
  • [1] Glaeser W. A.: Materials for tribology. Tribology Series, 20, Elsevier (1992).
  • [2] Skołek-Stefaniszyn E., Kaminski J., Sobczak J., Wierzchoń T.: Modifying the properties of AISI 316L steel by glow discharge assisted low-temperature nitriding and oxynitriding. Vacuum 85 (2010) 164÷169.
  • [3] Skołek-Stefaniszyn E., Burdynska S., Mroz W., Wierzchoń T.: Structure and wear resistance of the composite layers produced by glow discharge nitriding and PLD method on AISI 316L austenitic stainless steel. Vacuum 83 (2009) 1442÷1447.
  • [4] Li Y., Wang Z., Wang L.: Surface properties of nitrided layer on AISI 316L austenitic stainless steel produced by high temperature plasma nitriding in short time. Applied Surface Science 298 (2014) 243÷250.
  • [5] Frączek T., Olejnik M., Jasiński J., Skuza Z.: Short-term low-temperature glow discharge nitriding of 361L austenitic steel. Metalurgija 50 (3) (2011) 151÷154.
  • [6] Sun Y., Li X., Bell T.: Structural characteristics of low temperature plasma carburised austenitic stainless steel. Materials Science and Technology 15 (1999) 1171÷1178.
  • [7] García Molleja J., Nosei L., Ferrón J., Bemporad E., Lesage J., Chicot D., Feugeas J.: Characterization of expanded austenite developed on AISI 316L stainless steel by plasma carburization. Surface and Coatings Technology 204 (2010) 3750÷3759.
  • [8] Ceschini L., Chiavari C., Lanzoni E., Martini C.: Low-temperature carburised AISI 316L austenitic stainless steel: Wear and corrosion behavior. Materials and Design 38 (2012) 154÷160.
  • [9] Sun Y.: Tribocorrosion behavior of low temperature plasma carburized stainless steel. Surface and Coatings Technology 228 (2013) S342÷S348.
  • [10] Ozdemir O., Omar M. A., Usta M., Zeytin S., Bindal C., Ucisik A. H.: An investigation on boriding kinetics of AISI 316 stainless steel. Vacuum 83 (2009) 175÷179.
  • [11] Kayali Y., Büyüksagis A., Günes I., Yalçin Y.: Investigation of corrosion behaviors at different solutions of boronized AISI 316L stainless steel. Protection of Metals and Physical Chemistry of Surfaces 49 (3) (2013) 348÷358.
  • [12] Kayali Y., Büyüksagis A., Yalçin Y.: Corrosion and wear behaviors of boronized AISI 316L stainless steel. Metals and Materials International 19 (5) (2013) 1053÷1061.
  • [13] Hsu C. H., Huang K. H., Lin M. R.: Annealing effect on tribological property of arc-deposited TiN film on 316L austenitic stainless steel. Surface and Coatings Technology 259 (2014) 167÷171.
  • [14] Zhang L., Yang H., Pang X., Gao K., Tran H. T., Volinsky A. A.: TiNcoating effects on stainless steel tribological behavior under dry and lubricated conditions. Journal of Materials Engineering and Performance 23 (4) (2014) 1263÷1269.
  • [15] Major B.: Chapter 7: Laser processing for surface modification by remelting and alloying of metallic systems. In “Materials Surface Processing by Directed Energy Techniques”, edited by Yves Paleau, Elsevier (2006).
  • [16] Goły M., Kusiński J.: Microstructure and properties of the laser treated 30CrMnMo16–8 chromium steel. In: Problems of modern techniques in aspect of engineering and education, eds.: Paweł Kurtyka [et al.] Monography, Pedagogical University, Institute of Technology, Cracow (2006) 183÷188.
  • [17] Kulka M., Makuch N., Pertek A.: Microstructure and properties of laserborided 41Cr4 steel. Optics and Laser Technology 45 (2013) 308÷318.
  • [18] Paczkowska M., Ratuszek W., Waligora W.: Microstructure of laser boronized nodular iron. Surface and Coatings Technology 205 (2010) 2542÷2545.
  • [19] Filip R., Sieniawski J., Pleszakov E.: Formation of surface layers on Ti–6Al–4V titanium alloy by laser alloying. Surface Engineering 22 (1) (2006) 53÷57.
  • [20] Guo C., Zhou J., Zhao J., Guo B., Yu Y., Zhou H., Chen J.: Microstructure and friction and wear behavior of laser boronizing composite coatings on titanium substrate. Applied Surface Science 257 (2011) 4398÷4405.
  • [21] Kulka M., Makuch N., Dziarski P., Piasecki A., Miklaszewski A.: Microstructure and properties of laser-borided composite layers formed on commercially pure titanium. Optics and Laser Technology 56 (2014) 409÷424.
  • [22] Kulka M., Dziarski P., Makuch N., Piasecki A., Miklaszewski A.: Microstructure and properties of laser-borided Inconel 600-alloy. Applied Surface Science 284 (2013) 757÷771.
  • [23] Kulka M., Makuch N., Dziarski P., Piasecki A.: A study of nanoindentation for mechanical characterization of chromium and nickel borides’ mixtures formed by laser boriding. Ceramics International 40 (4) (2014) 6083÷6094.
  • [24] Kim T. H., Kim B. C.: Chromium carbide laser-beam surface-alloying treatment on stainless steel. Journal of Materials Science 27 (1992) 2967÷2973.
  • [25] Tassin C., Laroudie F., Pons M., Lelait L.: Improvement of the wear resistance of 316L stainless steel by laser surface alloying. Surface and Coatings Technology 80 (1996) 207÷210.
  • [26] Kwok C. T., Cheng F. T., Man H. C.: Laser-fabricated Fe–Ni–Co–Cr–B austenitic alloy on steels. Part I. Microstructures and cavitation erosion behavior. Surface and Coatings Technology 145 (2001) 194÷205.
  • [27] Kulka M., Mikołajczak D., Makuch N., Dziarski P.: Laser alloying of 316L steel with boron. Inżynieria Materiałowa 6 (2014) 512÷515.
  • [28] Kulka M., Mikolajczak D., Makuch N., Dziarski P., Miklaszewski A.: Wear resistance improvement of austenitic 316L steel by laser alloying with boron. Surface and Coatings Technology 291 (2016) 292÷313.
  • [29] Kwok C. T., Cheng F. T. , H. C. Man: Laser surface modification of UNS S31603 stainless steel using NiCrSiB alloy for enhancing cavitation erosion resistance. Surface and Coatings Technology 107 (1998) 31÷40.
  • [30] Kwok C. T., Man H. C., Cheng F. T.: Cavitation erosion–corrosion behaviour of laser surface alloyed AISI 1050 mild steel using NiCrSiB. Materials Science and Engineering A 303 (2001) 250÷261.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-21949569-5571-40cc-a285-c996bf8d3180
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.