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Abstract. A computational model for the damage analysis in the axially loaded nanopillar 

arrays was developed on the basis of the Fibre Bundle Model and hierarchical load sharing 

protocol. The nanopillars are characterised by random strength-thresholds drawn according 

to the nanoscale Weibull statistics. We study the influence of the coordination number and 

the number of hierarchy levels on the system strength, size of the catastrophic avalanche 

and probability of breakdown. 
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1. Introduction 

The phenomena of fracture and failure of materials are ubiquitous but mostly 

undesirable. Especially, in materials science and engineering the fracture and 

damage of disordered materials are intensively investigated problems [1-3]. Under 

external load, materials undergo a damage process that leads to complete failure 

if the load increase is not stopped. In this work we study breakdown processes 

in axially loaded metallic nanopillar arrays [4, 5]. The arrays of nanopillars are 

encountered in many areas of nanotechnology and reveal the potential applicability 

as components for the fabrication of electro-mechanical sense devices. To analyse 

failure in such arrays, we adapt the Fibre Bundle Model (FBM) which is a funda-

mental statistical approach for studying failure phenomena of heterogeneous mate-

rials [6-8]. The essential component of the FBM is the range and form of interac-

tion of elements (fibres). This component is known as load transfer rule and it has 

considerable influence on the behaviour of the system. In most analyses, the two 

extreme load transfer rules are explored. The first one is the global load sharing 

(GLS) rule - the load carried by just destroyed element is equally transferred to all 

the remaining elements in the system. As opposed to this rule, for the local load 

sharing (LLS) rule, only nearest surviving neighbours of the failing element absorb 

its load. In this paper we consider clustering of the nanopillars, and therefore 
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the applied load transfer rule is based on the hierarchical load sharing (HLS) 

[9-11]. The details of the model are presented in the following section. In the third 

section we present and discuss the obtained simulation results. 

2. Model of nanopillar array 

Let us consider an array consisting of N  longitudinal nanopillars. The system 

is subject to an axial mechanical loading. It is assumed that the nanopillars are 

of equal height and cross-sectional areas, and whose strength-thresholds i

thσ
, 

Ni ,,2,1 K=  to an applied axial load are independent random variables. Pillar-

strength-thresholds (also called critical loads) are drawn according to the nanoscale 

Weibull statistics [12, 13]: 
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where 
∗

n  is the number of critical defects, 
o
σ  and ρ  are Weibull’s scale and 

shape parameters, respectively. It is reasonable to employ nanoscale Weibull 

statistics, because at the nanoscale, a small number of critical defects (possibly one 

critical defect) can be responsible for the damage of the specimen, independently 

from the specimen size [12]. By applying nanoscale Weibull statistics, simply 

considering 1=
∗

n , we assume nearly defect-free structures. The Weibull modulus 

,ρ  being an index of dispersion of the distribution, is 2 and 1=
o
σ . 

Before the application of the external load, all the nanopillars in the array are 

intact. Then the system is subject to axial load F . In this paper two loading proce-

dures are employed. The first one is a quasi-static loading. In this procedure the 

external load is uniformly increased from its initial value ( 0=F ) until the destruc- 

tion of the weakest intact nanopillar under the load 
i
σ  attaining strength-threshold 

i

thσ  of this pillar. After the failure of the weakest pillar, the increase of the external 

load is stopped and the load from the broken pillar is transferred to other intact 

pillars according to a given load transfer rule. This load transfer may induce subse-

quent pillar failures and, as a result, next load redistributions, which can provoke 

further failures. If there is no failures after the load transfer, the external load has 

to be increased just to destroy the weakest intact pillar. The above-described pro-

cedure is repeated until all the nanopillars in the array collapse. We assume that all 

overloaded pillars fail simultaneously and their load is again redistributed because 

all failed pillars carry no load. The second employed loading procedure is the 

application of the finite force to the system. In this approach the external load 

is kept constant during the entire loading process. After the application of load F , 

all the nanopillars with strength-thresholds smaller than NF/  fail immediately and 

possible further failures are the result only of the load redistributions. 
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The applied load transfer rule is based on the hierarchical load sharing protocol 

[11]. Suppose that the pillars are grouped in a hierarchical way (see Fig. 1). 

At the lowest hierarchy level, the system is seen as a set of pillars. At the second 

level, the pillars form groups (clusters) containing z  nearest neighbours from 

the lowest level - it’s a neighbourhood of the order 1. In the third level, a group 

of the z  nearest groups from the second level is the neighbourhood of the order 2. 

In the fourth level, z  nearest groups from the third level form neighbourhood of 

the order 3 etc. Therefore, we assume clustering of the pillars in the sense of their 

close arrangement within the groups. The effective range of interaction is restricted 

to pillars belonging to the same group (cluster) of the lowest possible level. 

This means that, if possible, the load from the broken pillar is shifted equally to all 

intact pillars from its neighbourhood of the order 1. If all pillars in this neighbour-

hood are broken, the load is equally transferred to all intact pillars from the 

neighbourhood of the order 2 etc. In the original version of the HLS [11], if all the 

elements in the cluster are broken, the load is transferred to the cluster of the higher 

level and is redistributed equally among all the sub-clusters of this higher-level 

cluster. In our calculations, the number of hierarchy levels M  varies from 2 to 6. 

z  is called a coordination number. It should be noted that for ease of presentation 

we have illustrated the system with 2=z  in Figure 1. 

 

 

Fig. 1. Scheme of the system with coordination number 2=z  and five levels 

of hierarchy. System size 16=N  

3. Analysis of the simulation results 

Based on the FBM with HLS, a computer program was developed in order to 

simulate damage processes in the nanopillar arrays. Intensive computer simulations 

are conducted for the two loading procedures, mentioned in the previous section. 

Let us consider a quasi-static loading procedure. The destruction of the system 

proceeds in an avalanche-like manner - each increase of the external load induces 

cascade or cascades of simultaneous pillar failures. The cascades of failures 

provoked by the increment of the external load form an avalanche (∆). 
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One of the most important properties is the strength of the system, i.e. the mean 
 

value of load at which a system composed of N  pillars fail. This quantity can serve 
 

as a predictor of the collapse of the system. In the quasi-static case, the system 
 

failure is caused by attaining critical load .

c
F  The application of the load 

c
F  is the 

last stage of the system destruction and during this stage many cascades of failures 
 

evolve to create a catastrophic (critical) avalanche (
c
∆ ). 

In the following considerations, we will use values of catastrophic avalanche 
 

sizes and critical loads scaled by the initial system sizes: Nc /∆  and NF
cc
/=σ . 

The plots of the mean critical load 
c
σ  as a function of the system size N  are 

shown in Figures 2-4. As we see from these plots, mean critical load 
c
σ  is 

a decreasing function of N  and numerical data can be fitted by the formula: 

 ( )
δ

β
ασ

)(lnN
N

c
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where δβα ,,  are coefficients obtained from simulation results. From Figures 2 

and 3, it is also seen that the mean critical load decreases with increasing the num-

ber of hierarchy levels. This is consistent with conclusion for the original HLS that 

the increase in the number of hierarchy levels leads to lower strength of material 

[9-11]. However, it should be noted that the decrease of the critical loads slows 

down with the increasing number of hierarchy levels. For example, the difference 

between mean critical loads for 5=M  and 6=M  ( 4=z , see Figure 2) is almost 

negligible in comparison with difference between results for 2=M  and .3=M  

 

 

Fig. 2. The mean critical load c
σ  versus system size N  for different number 

of hierarchy levels and 4=z . The averages are taken from at least 1000 samples 
 

for each presented value. The dashed lines represent function (2) 
 

with parameters computed from simulations 
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Fig. 3. The mean critical load c
σ  versus system size N  for different number 

of hierarchy levels and 8=z . The averages are taken from at least 1000 samples 
 

for each presented value. The dashed lines represent function (2) 
 

with parameters computed from simulations 

 

Fig. 4. The mean critical load c
σ  versus system size N  for different coordination 

numbers and 3=M . The averages are taken from at least 1000 samples 
 

for each presented value. The dashed lines represent function (2) 
 

with parameters computed from simulations 

Here, we consider the influence of coordination number z  on the damage 

resistance of the system. Figure 4 shows mean critical loads for different values 

of z  and .3=M  It can be seen, excluding smallest systems, that the systems with 

elements paired in sequential order ( 2=z ) are the strongest ones. The weakest 

systems are those with middle coordination numbers ( 4=z  and 8=z ). Initially 

the systems with 4=z  have the smallest ,
c
σ  but with increasing system size 

the critical loads for the arrays with 8=z  decrease more quickly. The systems with 

the biggest coordination number ( 16=z ) initially are the strongest, but their c
σ  
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decrease more rapidly than in the systems with .2=z  Apparently, there is no 

ordering of critical loads in the relation to the coordination number. We will return 

to this in the last part of this section. 

 

 

Fig. 5. The fraction of pillars destroyed during critical avalanche versus system size N  

for 2=z (a), 4=z (b) and 8=z (c). The data are averaged over at least 
 

1000 realizations for each presented value 
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During a critical avalanche, an important fraction of N  pillars fails instantly. 

More specifically, most of the pillars are destroyed during the final avalanche. 

It is worth analysing the sizes of critical avalanches because the degree of the sys-

tem destruction can be an indicator of the forthcoming system failure. Figure 5 

shows the mean sizes of the normalized catastrophic avalanches as a function 

of .N  One can see that the ordering reported for the critical loads is reversed - 

the bigger the number of hierarchy levels the greater the normalized catastrophic 

avalanche. In some cases N
c
/∆  initially increases, but eventually it is a nonin-

creasing function of .N  This conclusion is in contrast with the results obtained 

for both the GLS and LLS rules, for which N
c
/∆  is an increasing function of N  

[4, 5]. One exception to the reported rule is the system with 4=z  and .6=M  

However, for this case, due to computational time, we did not simulate systems 

with .5120>N  

In the last part of this section we analyse probabilities of breakdown of nano- 

pillar arrays loaded by finite force .F  For this loading procedure, the initial load 

NF/=σ  of all pillars is equal, and the total load F  is conserved during the loading 

process. Under such a loading procedure, three states of the system can be reached. 

If the initial load NF/=σ  is smaller than any of the pillar-strength-thresholds all 

the pillars remain intact. Application of the finite force can also lead to partial 

damage - the system reaches a steady state after cascades of pillar failures. 

Cascades may also be self-sustained until destruction of all the pillars i.e. the state 

of complete breakdown. 

The simulation results for a different number of hierarchy levels are shown 

in Figures 6 and 7. It is seen from these plots that the ordering stated for the critical 

loads under quasi-static loading is preserved. 

As shown in Figures 6-9, breakdown probability as a function of initial load 

per pillar σ  can be nicely fitted by the function: 

 ( ) 






 −
=

ω

σξ
σ

22

1
erfcP  (3) 

where ξ  and ω  are coefficients obtained from simulation results, ( )zerfc  repre-

sents complimentary error function: 
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The function (3) is a cumulative distribution function of the Gaussian distribution 

with mean ξ  and variance .

2
ω  
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Fig. 6. Empirical breakdown probability bP  as a function of initial load per pillar σ  

for a different number of hierarchy levels and coordination number .2=z  All presented 

data are calculated from 1000 statistically independent samples. System size .4096=N  

The dashed lines represent function (3) with parameters computed from simulations 

 

Fig. 7. Empirical breakdown probability bP  as a function of initial load per pillar σ  

for a different number of hierarchy levels and coordination number .4=z  All presented 

data are calculated from 1000 statistically independent samples. System size .4096=N  

The dashed lines represent function (3) with parameters computed from simulations 

Figures 8 and 9 present probabilities of breakdown for a given number of hier-

archy levels. It is seen that these probabilities are not ordered according to coordi-

nation number. This fact can be explained as follows: after destruction of the pillar 

the load is equally redistributed to its intact neighbours of the lowest possible level. 

It is appropriate to introduce a distinction between load transfer to the neighbourhood 

of the highest level i.e. to all the intact pillars in the system (global load transfer) 

and load transfer to intact neighbours of lower levels. The first load transfer is much 
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more dispersed compared to the second one. It has been observed that with increase 

of z  the number of highest level load transfers decreases and the number of lower 

level load transfers increases. Hence, the global load transfer is partially replaced 

by more local transfer and this initially leads to decreasing strength. However, 

the local transfer becomes more and more dispersed as z  is increased - this, in turn, 

leads to increasing strength. As can be seen from Figures 4 and 8, for 4=z  and 

8=z , it seems that impact of the two ranges of load transfer almost compensate 

to give similar results. 

 

 

Fig. 8. Empirical breakdown probability bP  as a function of initial load per pillar σ  

for different values of z  and .3=M  All presented data are calculated from 1000 statisti-

cally independent samples. System size 4096=N . The dashed lines represent function 

(3) with parameters computed from simulations 

 

Fig. 9. Empirical breakdown probability bP  as a function of initial load per pillar σ  

for different values of z  and .4=M  All presented data are calculated 

from 1000 statistically independent samples. The dashed lines represent 

function (3) with parameters computed from simulations 
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4. Conclusions 

In this paper, the computational studies of mechanical damage in the axially 

loaded nanopillar arrays have been discussed. Due to clustering of the pillars, 

we applied the load transfer rule based on the hierarchical load sharing protocol. 

We have performed a series of simulations considering two different, but 

equivalent loading procedures. For the quasi-static loading we have noticed that 

the mean critical load is a decreasing function of the system size and it can be fitted 

by the function (2). Mean critical loads decrease as the number of hierarchy level is 

increased and the scaled catastrophic avalanche size is eventually nonincreasing 

function of N . For the case of finite force loading, we have shown that breakdown 

probabilities can be approximated by the function being a cumulative distribution 

function of the Gaussian distribution. We compared probabilities of breakdown 

for different values of the coordination number and different number of hierarchy 

levels. 
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