PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Light Effect in Semiconductor Bridge Plasma Ignition

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Heat is considered to play an important role in Semiconductor Bridge (SCB) plasma ignition. Nevertheless, in this paper a non-heat effect is reported for SCB ignition of primary explosives. An initial comparison showed that there is no reasonable correlation between the ease of plasma ignition and the 5-s explosion temperature. Meanwhile the addition of Pb3O4 was found to make lead styphnate (LS) more active to SCB plasma ignition whereas the heat decomposition of this mixture was not accelerated. In terms of the phenomena mentioned above and the response of primary explosives to SCB plasma, we propose an effect of light in SCB plasma ignition. The free radical concentration change indicates that light enhances the activity of primary explosives in SCB plasma ignition. Regarding the mixture of LS and Pb3O4, the additive itself does not make LS sensitive to the SCB plasma. However, the supplement makes LS active under light exposure. As a result, the effect of light on SCB plasma ignition was confirmed by the experiments conducted in this study. This paper provides a new understanding of SCB plasma ignition from the viewpoint of explosives, which is of importance for the design of SCBs.
Rocznik
Strony
996--1006
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
autor
  • Nanjing University of Science and Technology, Xiaolingwei 200, Xuanwu district, 210094 Nanjing, China
autor
  • Nanjing University of Science and Technology, Xiaolingwei 200, Xuanwu district, 210094 Nanjing, China
autor
  • Nanjing University of Science and Technology, Xiaolingwei 200, Xuanwu district, 210094 Nanjing, China
autor
  • Nanjing University of Science and Technology, Xiaolingwei 200, Xuanwu district, 210094 Nanjing, China
Bibliografia
  • [1] Li, H.; Zhou, Q.; Ren, H.; Jiao, Q. Ignition Characteristics of Semiconductor Bridge Based on Lead Styphnate and Lead Azide Charges under Capacitor Discharge Conditions. Sensors and Actuators A: Physical 2016, 241(1): 27-33.
  • [2] Ma, P.; Zhang, L.; Zhu, S.; Chen, H. Non-plasma Ignition of Lead Styphnate by a Semiconductor Bridge and its Comparison with Plasma Ignition. Combust., Explos. Shock Waves 2011, 47(1): 103-109.
  • [3] Yan, N.; Bao, B.; Zheng, F. Ignition Characteristics of Micro-Energy Semiconductor Bridges with Different Ignition Compositions. Propellants Explos. Pyrotech. 2016, 41(2): 223-227.
  • [4] Martinez, M. J.; Baer, M. R. Microconvective Heating of Ggranular Explosive by a Semiconductor Bridge. SAND-90-005710, 1990.
  • [5] Feng, H.; Zhang, L.; Zhu, S. Heat Transfer to a Single Explosive Particle Injected into SCB Plasma. Heat Mass Transfer 2012, 48(2): 585-590.
  • [6] Liu, M.; Zhang, X. Temperature Distribution and Discharge Modeling of a Semiconductor Bridge. IEEE Trans on Plasma Sci. 2012, 40(1): 16-21.
  • [7] Park, M.; Choo, H.; Yoon, S. H. Characteristics of Semiconductor Bridge Plasma Generated in a Micro-electro-mechanical System (MEMS). Physics Letters 2002, 305(6): 413-418.
  • [8] Benson, D. A.; Larsen, M. E. Semiconductor Bridge: A Plasma Generator for the Ignition of Explosives. J. Appl. Phys. 1986, 62(5): 1622-1625.
  • [9] Headley, P. S.; Bickes, R. W. A Semiconductor Bridge (SCB) Primary Explosive Detonator. SAND-86-2045, 1986.
  • [10] Thelen, B. C.; Chun, D.; Toulson, E.; Lee, T. A Study of an Energetically Enhanced Plasma Ignition System for Internal Combustion Engines. IEEE Trans on Plasma Sci. 2013, 41(12): 3223-3232.
  • [11] Porwitzky, A. J.; Keidar, M. Modeling of the Plasma-propellant Interaction. IEEE Trans Magn. 2007, 43(1): 313-317.
  • [12] Åberg, D.; Svanberg, L.-P.; Olsson, F. ETC 40-mm Gun Firings in the Low-input Energy Regime. IEEE Trans on Plasma Sci. 2011, 39(1): 374-378.
  • [13] Li, J.; Litzinger, T.; Malay, D.; Stefan, T. Study of Plasma-Propellant Interaction during Normal Impingement. J. Propulsion and Power 2006, 22(5): 929-933.
  • [14] Xiao, Z.; Xue, A.; Ying, S.; He, W.; Xu, F.; Hou, B. Experimental Studies of Propellant Loading Parameters and Plasma Flow-Field Interactions. IEEE Trans on Plasma Sci. 2009, 45(1): 514-517.
  • [15] Feng, H.; Zhang, L.; Zhu, S. Research on Semiconductor Bridge Plasma Ignition of Lead Styphnate. Chinese Armament Acta 2010, 31(6): 674-678.
  • [16] Beyer, R. A.; Rose, A. Experiments to Define Plasma-Propellant Interactions. IEEE Trans Magn. 2003, 39(1): 207-212.
  • [17] Feng, H.; Zhang, L.; Zhu, S. Research of the Semiconductor Bridge (SCB) Plasma Temperature and Duration. IEEE Trans Plasma Sci. 2009, 37(9): 3180-3185.
  • [18] Lao, Y. L. Process of Pyrotechnic Composition. Beijing, 2004, pp. 177-202; ISBN 7-81045-146-4/TJ-11.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-218eea2b-1caf-4428-af66-2ef52030e1b4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.