Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The Ni-base superalloys are used in the aircraft industry for the production of aero engine most stressed parts, turbine blades or turbine discs. Quality of aero jet engine components has a significant influence on the overall lifetime of a jet engine as itself as well as the whole airplane. From this reason a dendrite arm spacing, grain size, morphology, number and value of γ' - phase are very important structural characteristics for blade or discs lifetime prediction. The methods of quantitative metallography are very often used for evaluation of structural characteristics mentioned above. The high-temperature effect on structural characteristics and application of quantitative methods evaluation are presented in this paper. The two different groups of Ni-base alloys have been used as experimental material: cast alloys ZhS6K and IN713LC, which are used for small turbine blades production and wrought alloys EI 698VD and EI 929, which are used for turbine disc production. Selected alloys have been evaluated in the starting stage and after applied heattreatment at 850°C for 24 hrs. This applied heat-treatment causes structural changes in all alloys groups. In cast alloy dendritic structure is degraded and gamma prime average size has grown what has a negative influence on turbine blade creep rupture life. Wrought alloys show partially grain boundary melting and grain size changed due to recrystallization what causes mechanical properties decreasing - ultimate tensile strength mainly.
Wydawca
Czasopismo
Rocznik
Tom
Strony
222--229
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
autor
- University of Žilina, Slovakia
autor
- University of Žilina, Slovakia
autor
- Czestochowa University of Technology, Poland
autor
- University of Žilina, Slovakia
autor
- University of Žilina, Slovakia
Bibliografia
- 1.Akca, E., Gurse, I. A., 2015. A Review on Superalloys and IN718 Nickel-Based INCONEL Superalloy. Periodicals of Engineering and Natural Science, 3(1), 15-27.
- 2.Belan, J., 2012. Study of advanced materials for aircraft jet engines using quantitative metallography. In: R.K. Agarwal (Ed.), Recent Advances in Aircraft Technology, 1st ed., Vol. 1, InTech, Rijeka, pp. 49-74.
- 3.Hanumantha Rao, D., Tagore, G.R.N., Ranga Janardhana, G., 2010. Evolution of artificial network (ANN) model for predicting secondary dendrite arm spacing in aluminium alloy casting. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 32(3), 276-281, DOI: 10.1590/S1678-58782010000300011
- 4.Huang, X., Wang, L., Hu, Y., Guo, G., Salmon, D., Li, Y., Zhao, W., 2016. Fatigue Crack Propagation Behavior of Ni-Based Superalloys After Overloading at Elevated Temperatures. Progress in Natural Science: Materials International, 26(2), 197-203.
- 5.Kracke, A., 2010. Superalloys, the most successful alloy system of modern times-past, present and future. 7th international symposium on Superalloy 718 and derivatives, 13-50.
- 6.Marakumo, T., Kobayashi, T., Koizumi, Y., Harada, H., 2004. Creep behaviour of Ni-base single-crystal superalloys with various γ' volume fraction, Acta Materialia, 52, 3737-3744.
- 7.Okura, T., 2015. Materials for Aircraft Engines, ASEN 5063 Aircraft Propulsion Final Report, online: https://www.colorado.edu/faculty/.../materials-aircraft-engines
- 8.Oravcová, M., Palček, P., Chalupová, M., Uhríčik, M., 2017. Fracture mechanism differences created by fatigue and impact test. Materials Today - Proceedings, 4(5), 5921-5924.
- 9.Saltykov, S.A., 1958. Steremetricheskaya Metallograpfiya (Stereometric Metallography), 2nd revised and supplemented edition, Metallurgizdat, Moscow, 444p.
- 10.Sjöberg, G., 2008. Aircraft Engine Structure Materials. Volvo Aero Corporation, online: https://www.sto.nato.int/publications/.../EN-AVT-207-13.pdf
- 11.Vaško, A., 2017. Fatigue properties of nodular cast iron at low frequency cyclic loading. Archives of Metallurgy and Materials, 62(4), 2205-2210.
- 12.Zatkaliková, V., Oravcová, M., Palček, P., Markovičová, L., 2017. The effect of surface treatment on corrosion resistance of austenitic biomaterial. TRANSACTIONS OF FAMENA, 41(4), 25-34, DOI: 10.21278/TOF.41403
- 13.Zhang, H., Guan, Z.W., Wang, Q.Y., Liu, Y.J., Li, J.K., 2018. Effects of Stress Ratio and Microstructure on Fatigue Failure Behavior of Polycrystalline Nickel Superalloy. JMEPEG, 27, 2534-2544.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-218c6e88-9c07-4c97-ae22-e4195f74c42f